• Title/Summary/Keyword: Inorganic crystal

Search Result 274, Processing Time 0.03 seconds

Microwave Detector Using $YBa_2Cu_3O_{7-x}$ Grain Boundary Junction ($YBa_2Cu_3O_{7-x}$ 결정입계 접합을 이용한 마이크로파 감지소자)

  • Sin, Jung-Sik;Jo, Chang-Hyeon;Hwang, Du-Seop;Kim, Yeong-Geun;Wi, Dang-Mun;Cheon, Seong-Sun;Sin, U-Seok;Bae, Seong-Jun;Hong, Seung-Beom
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.681-686
    • /
    • 1994
  • Microwave Detector Using $YBa_{2}Cu_{3}O_{7-x}$, Grain Boundary Junction $YBa_{2}Cu_{3}O_{7-x}$ superconductor thin films were deposited on $LaAIO_{3}$ (100) single crystal substrates using a metal organic chemical vapor deposition (MOCVD) method. These films showed the critical temperature of about 9OK and critical current density of over $10^5/A \textrm{cm}^2$at 77K. These films showed granular structure with 0.5~1.5$\mu \textrm{m}$ grains. Bridge-type junctions, 6$\mu \textrm{m}$ in width and 6pm in length, were fabricated using the photolithography and the Ar ion milling techniques. Current-voltage (I-V) characteristics of these junctions with the microwave irradiation at 77K were studied. The critical current densities decreased as the irradiated microwave power increased. When microwaves were irradiated on the bridge at 77K. the I-V charateristics showed constant voltage stcp(Shapiro steps) at $\Delta$=nho/2e.

  • PDF

Preparation of a axis oriented $YBa_2Cu_3O_{7-\delta}$ thin films by RF magnetron sputtering (RF 마그네트론 스퍼터링법에 의한 a-축 배향 $YBa_2Cu_3O_{7-\delta}$박막의 제조)

  • Lee, J.J.;Kim, Y.H.;Shin, J.;Lee, K.H.;Choi, S.S.;Hahn, T.S.
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.459-465
    • /
    • 1994
  • A-axis oriened YBCO thin flims were grown on $LaAIO_{3}$ single crystal substrate by off-axis rf magnetron sputtering method. We used two kinds of process to get a-axis oriented fi1ms;one-step process and two-step process. In one-step process, films are grown in single step in which substrate temperature( $T_s$) is in the range of $590^{\circ}C$ to $680^{\circ}C$. On the other hand, in two step process a-axis oriented thin film templates i f about 30nm thickness is deposited at low temperature first, and subsequently films are grown at elevated temperature to the final thickness of about 100nm. In the case of one step process($T_s$ ~)$600^{\circ}C$), prefered a-axis orientation is dominant and Cu-rich phases segregate at the surface. Segregations decrease and ($00 \ell$) peaks increase upon increasing $T_s$. The films prepared by two step method appeared to have strong(h00) peaks as the deposition rate increased. Microstructure shows pin holes resulted from mixed phases of a-axis and c-axis oriented films. In both cases of one step and two step process, as TS decreases, prepared films show stronger a-axis orientation. However electrical properties of the films are depressed with lower $T_c$ and wider $\Delta T$ as $T_s$ decreases.

  • PDF

Crystallographical Characteristics of Solar Salts Produced from Jeonnam Area by X-Ray Diffraction Technique (X선 회절법에 의한 전남지역 천일염의 결정학적 특성)

  • Jeong, Byung-Jo;Kim, Yong;Kim, Chang-Dae;Hyun, Seung-Cheol;Ham, Gyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.9
    • /
    • pp.1284-1288
    • /
    • 2009
  • Identification of various inorganic compound crystals contained in solar salts, which are produced from 12 areas of Jeonnam, was firstly made by the X-ray diffraction (XRD) technique. The analysis of the XRD spectra was carried out on the basis of Joint Committee on Powder Diffraction Standards (JCPDS) data and the results of Energy Dispersive X-ray Spectrometer (EDX) measurements. In particular, the analysis of the XRD spectra supported that each solar salt contains $Na_2S$ (Shinan Jeungdo and Sinui), $KMgCl_3$ (Shinan Bigeum), $Ca(ClO_3)_2$ (Shinan Docho), $CaAl_4O_7$ (Haenam Songji), $CaSiO_3$ and $CaCl_2$ (Goheung) as inorganic compound crystals, which have not been reported for the solar salts. Also, the XRD results indicated that the solar salts maintain a cubic NaCl crystal structure without any change of lattice parameters etc. However, it was shown in the Field Emission Scanning Electron Microscope (FE-SEM) images that an external form of the solar salts has a lamination layer shape of a cubic structure, which is different from a simple cubic form for the purified salts and the reagent NaCl.

A Growth and Characterization of CsPbBr3 Thin Film Grown by Thermal Chemical Vapor Deposition (열화학기상증착법을 이용한 CsPbBr3 박막 성장 및 특성 연구)

  • Ga Eun Kim;Min Jin Kim;Hyesu Ryu;Sang Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2023
  • In this study, inorganic perovskite films with different compositions were grown by thermal chemical vapor deposition depending on the substrate and their optical properties were compared. Inorganic perovskite crystals were grown on SiO2/Si and c-Al2O3 substrates using CsBr and PbBr2, respectively, under the same growth conditions. Cs4PbBr6-CsPbBr3 crystallites were grown on the SiO2 with polycrystalline structure, while a CsPbBr3 (100) dominant thin film was formed on the c-Al2O3 substrate with single crystal structure. From the photoluminescence measurement, CsPbBr3 showed typical green emission centered at 534 nm with a full width at half maximum (FWHM) of about 91 meV. The Cs4PbBr6-CsPbBr3 mixed structure exhibits blue-shifted emission at 523 nm with a narrow FWHM of 63 meV and a fast decay time of 6.88 ns. These results are expected to be useful for application in photoelectric devices such as displays, solar cells, and light sensors based on inorganic metal perovskites.

Electro-Optical Characteristics of the Ion-Beam-Aligned FFS-LCD on a Diamond-like-Carbon Thin Film

  • Hwang, J.Y.;Park, C.J.;Seo, D.S.;Jeong, Y.H.;Kim, K.C.;Ahn, H.J.;Baik, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1132-1136
    • /
    • 2004
  • In this paper, we intend to make FFS mode cell with LC alignment used non-rubbing method, ion beam alignment method on the a-C:H thin film, to analyze electro-optical characteristics in this cell. We studied on the suitable inorganic thin film for FFS-LCD and the aligning capabilities of nematic liquid crystal (NLC) using the new alignment material of a-C:H thin film as working gas at rf bias condition. A high pretilt angle of about 5$^{\circ}$ by ion beam(IB) exposure on the a-C:H thin film surface was measured. An excellent voltage-transmittance (V-T) and response time curve of the ion-beam-aligned FFS-LCD was observed with oblique ion beam exposure on the DLC thin films.

  • PDF

Investigation of The New LC Alignment Film using $TiO_2$ thin film ($TiO_2$ 박막을 적용한 새로운 액정배향막의 연구)

  • Kim, Sang-Hoon;Kim, Byoung-Yong;Kang, Dong-Hun;Han, Jin-Woo;Kim, Sung-Yeon;Myoung, Jae-Min;Oh, Yong-Cheul;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.280-281
    • /
    • 2006
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a Titanium dioxide ($TiO_2$) thin film by rf magnetron sputtering system for 15min under various rf power. A very low pretilt angle by ion beam exposure on the $TiO_2$ thin film was measured. A good LC alignment by the ion beam alignment method on the $TiO_2$ thin film surface was observed at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $250^{\circ}C$. Consequently, the low NLC pretilt angle and the good thermal stability of LC alignment by the ion beam alignment method on the $TiO_2$ thin film by sputter method as various rf power condition can be achieved.

  • PDF

Electro-Optical Performances of In plane Switching (IPS) Cell on the Inorganic Thin Film by Ion Beam (IB) Method

  • Kim, Sang-Hoon;Hwang, Jeoung-Yeon;Kim, Jong-Hwan;Han, Jung-Min;Seo, Dae-Shik;Kim, Sung-Yeon;Oh, Byeong-Yun;Myoung, Jae-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.796-799
    • /
    • 2006
  • We studied the nematic liquid crystal (NLC) alignment capability by the Ion beam (IB) alignment method on a NDLC (Nitrogen doped Diamond Like Carbon) as a C:H thin film, and investigated electro-optical (EO) performances of the IB aligned In plane switching (IPS) cell with NDLC surface. A good LC alignment by IB exposure on a NDLC surface was achieved. Monodomain alignment of the IB aligned IPS cell can be observed. The good electro-optical characteristics of the IB aligned IPS cell was observed with oblique IB exposure on the NDLC as a-C:H thin film for 1min.

  • PDF

Study on the characteristics of inorganic thin film for OLED passovation (OLED passivation에 적용하기 위한 무기박막의 특성에 관한 연구)

  • Yoon, Jae-Kyoung;Kwon, Oh-Kwan;Yoon, Won-Min;Shin, Hoon-Kyu;Park, Chan-Eon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.176-176
    • /
    • 2010
  • OLED(Organic Light Emitting Device)는 LCD(Liquid Crystal Display)의 뒤를 잇는 차세대 디스플레이의 선두주자로서 자체발광형이기 때문에 백라이트 등의 보조광원이 불필요하며, 구동전압이 낮고 넓은 시야각과 빠른 응답속도 등의 특징을 가지고 있다. 또한 플렉서블 기판을 사용할 수 있어 차세대 디스플레이인 플렉서블 디스플레이에 적합하다. 플렉서블한 디스플레이를 만들기 위해서 플라스틱 기판에 OLED 물질을 사용하여 기존에 무겁고, 깨지기 쉬우며, 변형이 불가능한 유리로 만든 소자 보다 더 가볍고 깨지지 않고 변형이 가능한 플렉서블 디스플레이를 제작 할 수 있다. 그러나 플라스틱 기판은 매우 큰 투습율을 가지고 있어 OLED소자에 적용시키면 공기 중의 수분이나 산소와 접촉이 많아져 쉽게 산화되어 소자의 효율 및 수명이 짧아진다. 또한 OLED에 사용되는 유기물도 산소나 수분에 의해 특성이 급격히 저하되기 때문에 산소 및 수분의 차단은 필수적이다. 이러한 단점을 최소화하기 위해서 PECVD(Plasma Enhanced Chemical Vapor Deposition)로 만든 SiON(Silicon Oxynitride), $SiO_2$(Sillicon dioxide), $Si_3N_4$(Sillicon nitride) 박막을 차단막(Passivation layer)으로 사용하였다. PECVD(Plasma Enhanced Chemical Vapor Deposition)로 만든 SiON(Silicon Oxynitride), $SiO_2$(Sillicon dioxide), $Si_3N_4$(Sillicon nitride) 각각의 박막의 Crack의 특성을 85%-$85^{\circ}C$조건에서 24hr 측정하였다.

  • PDF

Liquid Crystal orientation on the NDLC Thin Film Deposited using physical deposition method (PVD방식을 이용한 NDLC 박막에서의 액정 배향 효과)

  • Lee, Won-Kyu;Oh, Byoung-Yun;Lim, Ji-Hun;Na, Hyun-Jae;Lee, Kang-Min;Park, Hong-Gyu;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.301-301
    • /
    • 2008
  • Ion beam (IB)-induced alignment of inorganic materials has been investigated intensively as it provides controllability in a nonstop process for producing high-resolution displays[1][2]. LC orientation via ion-beam (IB) irradiation on the nitrogen doped diamond like carbon (NDLC) thin film deposited by physical deposition method-sputtering was embodied. The NDLC thin film that was deposited by sputter showed uniform LC alignment at the 1200eV of the ion beam intensity. The pretilt angle of LC on NDLC thin films was measured with various IB exposure time and angle. The maximum pretilt angle were showed with IB irradiation angle of $45^{\circ}$ and exposure time of 62.5 sec, respectively. To show NDLC thin film stability in high temperature, thermal stability test was proceeded. The uppermost of the thermal stability of NDLC thin film was $200^{\circ}C$. In this investigation, the electro-optical (EO) characteristics of LC on NDLC thin film were measured.

  • PDF

Electron Crystallography of CaMoO4 Using High Voltage Electron Microscopy

  • Kim, Jin-Gyu;Choi, Joo-Hyoung;Jeong, Jong-Man;Kim, Young-Min;Suh, Il-Hwan;Kim, Jong-Pil;Kim, Youn-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.391-396
    • /
    • 2007
  • The three-dimensional structure of an inorganic crystal, CaMoO4 (space group I 41/a, a = 5.198(69) A and c = 11.458(41) A), was determined by electron crystallography utilizing a high voltage electron microscope. An initial structure of CaMoO4 was determined with 3-D electron diffraction patterns. This structure was refined by crystallographic image processing of high resolution TEM images. X-ray crystallography of the same material was performed to evaluate the accuracy of the TEM structure determination. The cell parameters of CaMoO4 determined by electron crystallography coincide with the X-ray crystallography result to within 0.033-0.040 A, while the atomic coordinates were determined to within 0.072 A.