• Title/Summary/Keyword: Inorganic crystal

Search Result 274, Processing Time 0.025 seconds

Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam (이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구)

  • Lee, Sang-Keuk;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Kim, Jong-Hwan;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF

A Study on Electro-optical Characteristics of the Ion Beam Aligned FFS Cell on a Inorganic Thin Film (무기 박막을 이용한 이온빔 배향 FFS 셀의 전기광학특성에 관한 연구)

  • Hwang, Jeoung-Yeon;Park, Chang-Joon;Jeong, Youn-Hak;Kim, Kyung-Chan;Ahn, Han-Jin;Baik, Hong-Koo;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1100-1106
    • /
    • 2004
  • In this paper, we intend to make fringe-field switching (FFS) mode cell by the ion beam (IB) alignment method on the a-C:H thin film, to analyze electro-optical characteristics in this cell. We studied on the suitable inorganic thin film for fringe-field switching (FFS) cell and the aligning capabilities of nematic liquid crystal (NLC) using the alignment material of a-C:H thin film as working gas at 30 W rf bias condition. A high pretilt angle of about 5 $^{\circ}C$ by ion beam (IB) exposure on the a-C:H thin film surface was measured. Consequently, the high pretilt angle and the good thermal stability of LC alignment by the IB alignment method on the a-C:H thin film surface as working gas at 30 W rf bias condition can be achieved. An excellent voltage-transmittance (V -T) and response time curve of the IE-aligned FFS-LCD was observed with oblique IB exposure on the a-C:H thin films. Also, AC V-T hysteresis characteristics of the IB-aligned FFS-LCD with IE exposure on the a-C:H thin films is almost the same as that of the rubbing-aligned FFS cell on a polyimide (PI) surface.

Properties of $Y_{2-x}SiO_{5}:Ce_{x}^{3+}$ Phosphor Powder Prepared by Sol-gel Process (Sol-gel법에 의한 $Y_{2-x}SiO_{5}:Ce_{x}^{3+}$ 형광체 제조와 그 특성)

  • Kim, Sang-Mun;Kang, Kyoung-Tae;Kim, Tae-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.794-798
    • /
    • 2001
  • $Y_{2-x}SiO_5:Ce_x^{3+}$(x=0.002∼0.04) phosphors were prepared by sol-gel process, amorphous crystal phase was observed in calcining dry gel at 800$^{\circ}$C, but pure $X_2$ type of type $Y_2SiO_5$ phase appeared from heat treatment above 1000$^{\circ}$C. Light absorption of tye $Y_2SiO_5$ host lattice occurred at 230∼360nm, and light absorption of the $Y_{2-x}SiO_5:Ce_x^{3+}$ phosphors was observed at 300∼400nm in adding $Ce^{3+}$. $Y_{2-x}SiO_5:Ce_x^{3+}$ phosphors showed maximum emission shoulder at 436nm. Maximum CL intensities of $Y_{2-x}SiO_5:Ce_x^{3+}$ were observed in adding 0.025 $Ce^{3+}$ and the phosphor showed x=0.161, y=0.124 in color coordinate of CIE1931.

  • PDF

Synthesis and characterization of thermally stable pink-red inorganic pigment for digital color (디지털 컬러용 pink-red 고온발색 무기안료의 합성 및 특성평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Kim, Jin-Ho;Cho, Woo-Suk;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.169-175
    • /
    • 2014
  • Digital ink-jet printing system has many advantages such as fast and fine printing of various images, high efficiency and low cost process. Generally digital ink-jet printing requires ceramic pigments of cyan, magenta, yellow and black with thermal and glaze stability above $1000^{\circ}C$ for the application of porcelain product design. In this study, pink-red colored $CaO-SnO_2-Cr_2O_3-SiO_2$ pigment was synthesized using solid state reaction. The synthesis conditions of $Ca(Cr,Sn)SiO_5$ pigment such as annealing temperature, amount of mineralizer and non-stoichiometric composition were optimized. Crystal structure and morphology of the obtained $Ca(Cr,Sn)SiO_5$ pigment were analyzed using XRD, SEM, PSA, FT-IR and effect of Cr substitution on the pigment color was analyzed using Uv-vis. spectrophotometer and CIE $L^*a^*b^*$ measurement.

A review on inorganic phosphor materials for white LEDs (백색 발광다이오드(White LEDs)용 무기형광체 재료의 연구개발 현황)

  • Hwang, Seok Min;Lee, Jae Bin;Kim, Se Hyeon;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.233-240
    • /
    • 2012
  • White LEDs (light-emitting diodes) are promising new-generation light sources which can replace conventional lamps due to their high reliability, low energy consumption and eco-friendly effects. This paper briefly reviews recent progress of oxy/nitride host phosphor and quantum dot materials with broad excitation band characteristics for phosphor-converted white LEDs. Among oxy/nitride host materials, $M_2Si_5N_8$ : $Eu^{2+}$, $MAlSiN_3$ : $Eu^{2+}$ M-SiON (M = Ca, Sr, Ba), ${\alpha}/{\beta}$-SiAlON : $Eu^{2+}$ are excellent phosphors for white LED using blue-emitting chip. They have very broad excitation bands in the range of 440~460 nm and exhibit emission from green to red. In this paper, In this review we focus on recent developments in the crystal structure, luminescence and applications of the oxy/nitride phosphors for white LEDs. In addition, the application prospects and current trends of research and development of quantum dot phosphors are also discussed.

Synthesis of Needle-like Aragonite from Limestone without Calcinations in the Presence of Magnesium Sulfate

  • Hu, Zeshan;Shao, Minghao;Cai, Qiang;Jiao, Zhaojie;Zhong, Chenhua;Deng, Yulin
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • Much attention has been paid to the processing of inorganic whisker, especially calcium carbonate whisker, which can be used as reinforcement materials of polymer composite due to its low price. Unfortunately, the present synthesis technique of calcium carbonate whisker starts from calcinations of limestone, which involves high energy consumption and furthermore is a highly environment polluting reaction. In this report, needle-like aragonite was synthesized with a reversible solution reaction from limestone without calcination. Optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used to characterize the morphology and crystal structure of intermediates as well as that of the product, aragonite. GCC (grinding calcium carbonate) powder was dissolved in an aqueous solution of magnesium sulfate with reflux and air flush. EDTA titration was used to evaluate reaction rate of the dissolution. A kinetics equation of the dissolution reaction was constructed, which displayed second-order kinetics with respect to the concentration of magnesium sulfate. A rate constant of $0.0015\;l^{-3}{\cdot}mol^{-1}{\cdot}h^{-1}$ was obtained. The dissolution reaction gave fiber-like magnesium hydroxide sulfate and gypsum crystal. Then needle-like aragonite with a length of $9.13\;{\pm}\;1.02\;{\mu}m$ and an aspect ratio of $5.64\;{\pm}\;1.37$ was synthesized from the dissolution product with $CO_2$ bubbling at $70^{\circ}C$.

Environmentally Friendly Preparation of Functional Nanomaterials and Their Application

  • Lee, Sun-Hyung;Teshima, Katsuya;Endo, Morinobu;Oishi, Shuji
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.5.1-5.1
    • /
    • 2010
  • One of the most important environmental problems is global warming. Global warming is caused by increase in the amounts of water vapor, methane, carbon dioxide and other gases being released into the atmosphere as a result of the burning of fossil fuels. It has thus become important to reduce fossil fuel use. Environmentally friendly preparation of functional materials has, therefore, attracted much interest for environmental problems. Furthermore, nature mimetic processes are recently been of great interest as environmentally friendly one. There have been many studies on fabrication of various functional nanocrystals. Among various nanocrystal fabrication techniques, flux growth is an environmentally friendly, very convenient process and can produce functional nanocrystals at temperatures below the melting points of the solutes. Furthermore, this technique is suitable for the synthesis of crystals having an enhedral habit. In flux growth, the constituents of the materials to be crystallized are dissolved in a suitable flux (solvent) and crystal growth occurs as the solution becomes critically supersaturated. The supersaturation is attained by cooling the solution, by evaporation of the solvent or by a transport process in which the solute is made to flow from a hotter to a cooler region. Many kinds of oxide nanocrystals have been grown in our laboratory. For example, zero- (e.g., particle), one- (e.g., whisker and tube) and two-dimensional (e.g., sheet) nanocrystals were successfully grown by flux method. Our flux-growth technique has some industrial and ecological merits because the nanocrystal fabrication temperatures are far below their melting points and because the used reagents are less harmless to human being and the environment.

  • PDF

Investigation of Color Mecchanism in Co-Doped Augite Purple for Color Glaze (Co-Doped Augite 보라색 유약의 발색기구)

  • Kwon, Young-Joo;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.271-275
    • /
    • 2013
  • Cobalt (Co) compounds have been used for centuries to impart rich blue color to glass, glazes and ceramics. Cobalt monoxide (CoO), an oxide of Co, is an inorganic compound that has long been used as a coloring agent in the ceramic industry. Unlike other coloring agents, CoO can be used to develop colors other than blue, and several factors such as its concentration in the glaze and firing condition have been suggested as possible mechanisms. For example, CoO produces a typical blue color called "cobalt blue" at very low concentrations such as 1 wt% in both oxidation and reduction firing conditions; a higher concentration of CoO (5 wt%) develops a darker blue color under the same firing conditions. Interestingly, CoO also develops a purple color at high concentrations above 10 wt%. In this study, we examined the applicability and mechanism of a novel purple glaze containing cobalt(II, III) oxide, one of the well characterized cobalt oxides. Experimental results show that an Augite crystal isoform (Augite-Fe/Co) in which Fe was replaced with Co is the main component contributing to the formation of the purple color. Based on these results, we developed a glaze using chemically synthesized Augite-Fe/Co crystal as a color pigment. Purple color glaze was successfully developed by the addition of 6~15 wt% of $Co_3O_4$ to magnesia lime.

Fabrication and Characterization of a Fiber-Optic Alpha/Beta Detector for Nuclear Medicine Application (핵의학 적용을 위한 광섬유 기반의 알파/베타 검출기의 제작 및 특성분석)

  • Hong, Seung-Han;Yoo, Wook-Jae;Shin, Sang-Hun;Seo, Jeong-Ki;Han, Ki-Tek;Jeon, Da-Yeong;Cho, Seung-Hyun;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.367-373
    • /
    • 2012
  • We fabricated a fiber-optic alpha/beta detector, which is composed of a sensing probe, a plastic optical fiber, a photomultiplier tube, and a multichannel analyzer, to obtain the energy spectra of radioactive isotopes. As inorganic scintillators of a sensing probe, a ZnS(Ag) film was coupled with a $CaF_2$(Eu) crystal for alpha and beta spectroscopy. In this study, $^{210}Po$ and $^{90}Sr$ were used as alpha and beta sources, respectively, and we measured the radiation energy spectra using a fiber-optic alpha/beta detector to identify alpha and beta emitting radionuclides for nuclear medicine application. Also, the variations of energy spectrum were obtained according to the length of plastic optical fiber.

Effect of Residual Chloride Ion on Thermal Decomposition Behaviour os Stannic Acid and Physical Properties of $SnO_2$ Powder Fabricated for Gas Sensor (가스센서용 $SnO_2$분말 제조시 잔류 염소이온이 Sn수화물의 열분해거동 및 분말물성에 미치는 영향)

  • Song, Guk-Hyeon;Choe, Byeong-U;Park, Jae-Hwan;Park, Sun-Ja
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.934-944
    • /
    • 1994
  • Effects of residual chloride on thermal decomposition behaviour of a-stannic acid and physical properties of $SnO_{2}$ powder were observed. The powder was fabricated by hydroxide method; $\alpha$-stannic acid was precipitated by mixing acqueous solutions of $SnCl_{4}$ and $NH_{4}$OH . The precipitate was washed with $NH_{4}NO_{3}$ solution while washing was controlled to be of three grades to modify its residual chloride content. The precipitate was dried at $1100^{\circ}C$ ~ 24h and calcined in air at $500^{\circ}C$ ~ $1100^{\circ}C$ for one hour. Thermal decomposition behaviour of $\alpha$-stannic acid was examined by a DT-TGA and a FTIR. Chemical composition and physical properties of $SnO_{2}$ powder were observed by an AES, a BET and a TEM, respectively. With a reduction in chloride content, the relative crystallite size of $SnO_{2}$ powder slightly increased by a low-temperature-calcining. However, at a high calcining temperature(T), the reverse relation occured. It was suggested that chloride ion replaces part of lattice oxygen site of a-stannic acid. Also, chloride ion on the site was suggested to retard de-hydration as well as crystalization at a low T while to promote crystal growth of $SnO_{2}$ by forming oxygen vacancy at a high T.

  • PDF