• Title/Summary/Keyword: Inorganic binders

Search Result 38, Processing Time 0.022 seconds

Shell Powder Coating on the Surface of Concrete by Geopolymer Cement (지오폴리머 시멘트를 이용한 콘크리트 표면의 패각 분말 코팅)

  • Kim, Gab-Joong;Han, Hyun-Geun;Seo, Dong-Seok;Lee, Jong-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Geopolymer materials are attractive as inorganic binders due to their superior mechanical and eco-friendly properties. In the current study, geopolymer-based cement was prepared using aluminosilicate minerals from fly-ash with KOH as an alkaline-activator and $Na_2SiO_3$ as liquid glass. Then, calcium carbonate powder from a clam shell was mixed with the geopolymer and the mixture was coated on a concrete surface to provide points of attachment for environmental organisms to grow on the geopolymers. We investigated the effect of the shell powder grain size on the microstructure and bonding property of the geopolymers. A homogeneous geopolymer layer coated well on the concrete surface via aluminosilicate bonding, but the adhesiveness of the shell powder on the geopolymer cement was dependent on the grain size of the shell powder. Superior adhesive characteristics were shown in the shell powder of large grain size due to the deep penetration into the geopolymer by their large weight. This kind of coating can be applied to the adhesiveness of eco-materials on the surface of seaside or riverside blocks.

Solidification/Stabilization of Arsenic Contaminated Soil Using Cement-Based Synthesized Materials (시멘트계 합성물질을 이용한 비소 오염 토양의 고형화/안정화)

  • Kim, Ran;YHong, Seong Hyeok;Jung, Bahng Mi;Chae, Hee Hun;Park, Joo Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.59-65
    • /
    • 2012
  • Solidification/Stabilization(S/S) is one of the remediation technologies that have been applied for treating inorganic hazardous wastes. This study investigated the reduction of arsenic concentration of arsenic-contaminated soil using by S/S. The binder plays a role in controlling the mobility and solubility of the contaminants in S/S process, so it is important to determine the optimum binder content. Therefore, this study evaluated the effectiveness of S/S using four different binders(cement, zero valent iron, and monosulfate and ettringite(cement-based synthesized materials) at the binder content ranged between 5%(wt.) and 20%(wt.). The leachability of arsenic in 1 N HCl was different depending on the types of binders: cement(71.41%) > monosulfate(47.45%) > ettringite(46.36%) > ZVI(33.08%) at the binder content of 20%. Additionally, three kinds of a mixture binder were prepared using cement and additives(monosulfate, ettringite, calcium sulfoaluminate(CSA)) and tested for arsenic reduction. The highest arsenic removal capacity was found at the mass ratio of cement to the additive, 4:1 in all experiments using a mixture binder, regardless of the additives types. A mixture binder(cement and additives) resulted in higher arsenic removal relative to the arsenic removal when cement was used alone.

Preparation of Superhydrophobic Surfaces Using Agglomeration Control of Silica Nanoparticles by Organic Solvent and Non-fluoride Self-assembled Monolayers (유기용매에 의한 실리카 나노입자의 응집조절과 비불소계 자기조립박막을 이용한 초발수 표면 제조)

  • Kim, Taeyoon;Jeong, Jin;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.116-121
    • /
    • 2015
  • In this study, octadecyltrichlorosilane (OTS) has been used to replace fluoro-silanes which are much more expensive than OTS. In order to improve the mechanical and adhesive properties of coating layers, inorganic binders were separately synthesized based on sol-gel reaction in acidic condition. Since the synthesized silica nanoparticles gave only nano-scaled roughness, superhydrophobicity is not well obtained. Here, we present a new simple approach by intentionally inducing particle aggregation in the solution which is controlled by adjusting solvent amount. With selecting suitable sizes of silica nanoparticles, superhydrophobic surfaces were obtained with increasing the amount of organic solvents after surface hydrophobization using OTS, and an extremely water-repellent behavior was observed with zero sliding angle. This superhydrophobicity was achived only for the dielectric constant lower than 25, regardless of the composition of solvent, meaning that the dielectric constant could be an excellent indicator for fabricating superhydrobic surfaces induced by particle aggregation in the solution.

Chemical Composition of Painting Materials used in Some Korean Shipyards (조선업의 도장 작업시 취급하는 도료중 유해물질 성분에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.156-172
    • /
    • 1999
  • Potential chemical hazards encountered in painting operation of four shipyards and a ship-repair shop were investigated through the material safety data sheets (MSDS). Material safety data sheets (MSDS) for 307 paints, 50 thinners and 34 binders were collected and reviewed. It was shown that various organic solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, ketones, alcohols, glycols, glycol ether acetates and esters were contained in painting materials. Of these solvents, xylene was found in the largest number of painting materials. sixty percent of the thinners contained xylene in the contents of 20-100%. Other most frequently found solvents were 1-methoxypropanol, 1-methoxypropyl acetate, n-butanol, methyl isobutyl ketone, toluene, isopropanol, and n-butyl acetate, etc. Glycol ethers such as 2-methoxyethanol (2-ME), 2-methoxyethyl acetate (2-MEA), 2-ethoxyethanol (2-EE), 2-ethoxyethyl acetate (2-EEA) and 2-butoxyethanol (2-BA) were regarded as having the potential to cause adverse reproductive effects, embryotoxic effect and hematotoxic effects, and were found in some epoxy panting materials. Coal tar pitch was included in some paints(13%) where polynuclear aromatic hydrocarbons (PAHs) could be contaminated. Inorganic pigments such as lead chromate and zinc potassium chromate were found in some paints (8%). The epoxy resin based paints, which may contain isocyanates such as toluene diisocyanates and hexamethylene diisocyanates causing potential sensitization and asthma to upper respiratory organ, were mostly used in the shipyards. The constituents in the MSDS were significantly different from the results analyzed using gas chromatography/mass detector: minor constituents or impurities were omitted in many MSDS. In conclusion, xylene was the most frequent organic solvent in painting materials, and glycol ethers, including 2-ME, 2-MEA, 2-EE, 2-EEA and 2-BA, were found some products. Also, painting workers may be exposed to PAHs, lead, chromate, isocyanates, organic tin and other various chemicals. The compositions of chemicals in painting materials were variable significantly, and the hazards were changed. These facts should be considered in environmental monitoring and control of the hazards.

  • PDF

Characterization of Nickel Composite Plating with TiO2 Particles for Photolysis of Organic Compound (유기물 광분해용 니켈-TiO2 복합도금 전극 특성에 관한 연구)

  • Choi, Chul-Young;Cho, Seung-Chan;Ryu, Young-Bok;Kim, Young-Seok;Kim, Hyoung-Chan;Kim, Yang-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.125-130
    • /
    • 2007
  • Many fundamental studies have been carried out regarding waste water and hazardous gas treatment technology using the photolysis effect of $TiO_2$. However, photolysis of both organic and organic-inorganic binders immobilizing $TiO_2$ makes permanent use impossible. In this study we manufactured a catalytic electrode by nickel-$TiO_2$ composite plating in order to immobilize $TiO_2$. The surface properties according to the current density changes of cathode and concentration changes of $TiO_2$ powder in nickel plating bath has been analysed with EDX, XRF, SEM, Raman spectrometer etc. The characterization of the catalytic electrode in decomposition of organic compound has been obtained by using UV-Visible spectrophotometer through analysing concentration changes of methyl orange solution containing the catalytic electrode vs. time with projecting UV-light in the solution. The study shows that a catalytic electrode of nickel-$TiO_2$ composite plating with high-efficiency in decompostion of organic compound has been formed under high concentration of $TiO_2$ powder and low current density of cathode.

Photolytic Characteristics of Ni-TiO2 Composite Coating from Electroless Plating (무전해 Ni-TiO2 복합도금을 이용한 광분해 특성 연구)

  • Choi, Chul-Young;Han, Gil-Soo;Jo, Il-Guk;Kim, Young-Seok;Kim, Yang-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.157-160
    • /
    • 2009
  • Many fundamental studies have been carried out regarding waste water and hazardous gas treatments technologies using the photolysis effect of $TiO_2$. However, a permanent use of $TiO_2$ particles immobilized using organic or organic-inorganic binders is impossible. In this study, Ni-$TiO_2$ composite coating was produced by electroless plating to trap $TiO_2$ particles in the Ni coating layer. The electroless plating was performed in the bath solutions with three different concentrations of $TiO_2$ particles : 10 g/l, 20 g/l, and 40 g/l. The surface and photolytic characteristics of the coating layer was investigated by the use of SEM, a scratch tester, and an UV-Visible spectrophotometer. The results showed that the amounts of immobilized $TiO_2$ particles and the photolytic rate of the coating increased with the initial content of $TiO_2$ particles in the electroless bath. In addition, the photolytic rate of the Ni-$TiO_2$ composite coating was remarkably promoted by etching process in 10% HCl solution.

Structural Stability Evaluation of Eco-Friendly Prefabricated Rainwater Infiltration Type Detention Facility with Red Clay Water-Permeable Block Body (황토투수블록체를 적용한 친환경 조립식 빗물 침투형 저류시설의 구조 안정성 평가)

  • Choi, Hyeonggil;Lee, Taegyu;Kim, Hojin;Choi, Heeyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, due to the frequent occurrence of localized torrential rains and heat waves caused by abnormal climates. For this reason, it is necessary to develop an economical and eco-friendly rainwater detention facility that can secure the groundwater level through rainwater detention as well as flood prevention against concentrated rainfall by simultaneously implementing rainwater permeation and storage. In this study, the structural safety of an eco-friendly rainwater infiltration type detention facility made using eco-friendly inorganic binders including red clay was examined. Static analysis considering the constant load and additional vertical load and dynamic analysis considering the seismic spectrum were performed. As a result, it was found that the eco-friendly prefabricated rainwater infiltration type detention facility developed in this study has a maximum stress of about 68.1% to 75.4% and a maximum displacement of about 0.9% to 9.6% under the same load and seismic conditions compared to the existing PE block rainwater detention facility. It was confirmed that the eco-friendly prefabricated rainwater infiltration type detention facility secured excellent structural stability.

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.