• Title/Summary/Keyword: Inorganic and Organic fertilizer

Search Result 159, Processing Time 0.026 seconds

Growth of Zoysiagrass and Seashore Paspalum on Volcano Eruption Sand and Clayey Soil with Organic and Inorganic Fertilizers in Indonesia

  • Rahayu, Rahayu;Zuamah, Hidayatuz;Yang, Geun-Mo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.240-245
    • /
    • 2014
  • This study was carried out to determine the possible use of volcano eruption sand at Merapi mountain area compared with clayey soil, alfisol as turfgrass growing media. Indonesia has abundant source of eruption sand and clayey soil. Native zoysiagrass (Z. matrella) was collected from Sleman district and seashore paspalum (P. vaginatum) from Solo region. The experimental plots were treated with both organic and inorganic fertilizers. Zoysiagrass and seashore paspalum can grow on the mixture of eruption volcano sand and alfisol soil. Fertilizers application increased turf color, surface coverage rate and recovery rate of turfgrass. While fertilizer treated alfisol have no effect on the length and dry weight of zoysiagrass root. Mixing of volcano eruption sand on growing media resulted in longer root length, higher shoot dry weight of zoysiagrass than in alfisol soil. Type of fertilizer affected the pH, soil organic matter, total N, available P, available K and electrical conductivity of sand and alfisol after cultivation. Similarly to zoysiagrass, the recovery of seashore paspalum was increased by application of fertilizer, even the inorganic fertilizer showed faster recovery than organic fertilizer. Surface coverage of seashore paspalum was faster than that of zoysiagrass with or without fertilizer.

Assessing Phosphorus Availability in a High pH, Biochar Amended Soil under Inorganic and Organic Fertilization

  • Kahura, Millicent Wanjiku;Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • Phosphorous remains as one of the most limiting nutrients to plant growth, second only to nitrogen. Research on use of biochar as a soil amendment for available phosphorus in temperate calcareous soils has limited studies compared with to tropical acidic soils. An incubation experiment to assess phosphorous availability in a biochar amended calcareous soil under inorganic (Fused superphosphate, FSP) and organic fertilizer (bone meal, BM) and respectively, at the dose of 40, 80 and $120mg\;P\;kg^{-1}$ was carried out. Soil was incubated at $25^{\circ}C$ for 70 days. Results show that the rate of increase in available P was proportional to the fertilizer application rate with or without biochar amendment. Biochar did not have a significant effect on soils amended with either fertilizeron the values of available P. However, time had a significant effect (p<0.001) on the amount of available P during the incubation period. Inorganic fertilizer treatments had recorded high amount of available P with time compared to organic fertilizer treatments. Organic fertilizer treatment sample were significantly not different from control and for most of the incubation time biochar acted as a soil conditioner. Further research is required to understand the holistic and long-term effect of biochar.

Effects of different nitrogen fertilizer applications on growth of Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Jin-Hyuk Chun;Yun-Gu Kang;Yong-Jun Yu;Jae-Han Lee;Yeo-Uk Yun;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.657-666
    • /
    • 2022
  • Nitrogen (N) is a vital element in growing crops and is essential for improving the yield and quality of crops. Thus, N fertilizer is the most widely used fertilizer and the primary N input source in soil-crop systems. Inorganic fertilizers such as urea are known to improve crop productivity and increase soil fertility. However, application with excessive amounts can interfere with crop growth and accelerate soil acidification. For these reasons, the use of organic fertilizers, which mainly contain organic nitrogen, has gradually increased worldwide. Therefore, this study evaluated the effects of N fertilizer on the growth of Chinese cabbage including its functional compounds glucosinolates (GSLs). For the cultivation of Chinse cabbage, inorganic fertilizer was used for urea, and organic fertilizers were divided into conventional and biochar-based fertilizers. The growth parameters of Chinese cabbage treated by organic fertilizers was better than those of the inorganic fertilizers. Additionally, it was found that their co-application was more efficient. However, their GSL contents were lower with the application of the organic fertilizers. The characteristics of the experimental soil also changed according to the type, amounts and co-application of fertilizers. Therefore, this study presents the basis for an eco-friendly method that can increase the functionality and productivity of Chinese cabbage compared to conventional cultivations.

Soil Organic Carbon Determination for Calcareous Soils (석회암 유래 토양의 토양유기탄소 분석법 연구)

  • Jung, Won-Kyo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.396-402
    • /
    • 2006
  • Soil organic carbon has long been considered as the most critical factor to evaluate the soil quality, fertility, and fertilizer prescription. In addition, soil organic carbon may impact on greenhouse gas effects and global warming. Because of that, the management of soil organic carbon is increasingly important not only for improving soil quality but also for managing soil as a greenhouse gas source. Both wet and dry combustion have been used to determine soil organic carbon. Many benefits, such as automation and less labor, could the dry combustion method become more popular. Inorganic form of carbon could overestimate soil organic carbon when the dry combustion method was applied. Determination of soil inorganic carbon may contribute to the improved accuracy of soil organic carbon analysis using dry combustion method. Objectives of this research were 1) to develop soil inorganic carbon determination method using modified digital pressure calcimeter and 2) to evaluate soil organic carbon from calcareous soils using the dry and wet combustion method. Results showed that the significant linear relationship was found between soil inorganic carbon content and pressure calcimeter output. Inorganic carbon ranged from 22% to 28% of total carbon in the calcareous soil samples. Soil organic carbon content by dry combustion for calcareous soil was determined by subtracting inorganic carbon measured by the digital pressure calcimeter from total carbon. Soil organic carbon determined by dry combustion method was significantly correlated with that by wet combustion method. In conclusion, the digital pressure calcimeter may use to improve soil organic carbon determination for the calcareous soils by subtracting of soil inorganic carbon from total carbon determined by dry combustion method.

Effects of Long-Term Fertilizer Practices on Rhizosphere Soil Autotrophic CO2-Fixing Bacteria under Double Rice Ecosystem in Southern China

  • Tang, Haiming;Wen, Li;Shi, Lihong;Li, Chao;Cheng, Kaikai;Li, Weiyan;Xiao, Xiaoping
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1292-1298
    • /
    • 2022
  • Soil autotrophic bacterial communities play a significant role in the soil carbon (C) cycle in paddy fields, but little is known about how rhizosphere soil microorganisms respond to different long-term (35 years) fertilization practices under double rice cropping ecosystems in southern China. Here, we investigated the variation characteristics of rhizosphere soil RubisCO gene cbbL in the double rice ecosystems of in southern China where such fertilization practices are used. For this experiment we set up the following fertilizer regime: without any fertilizer input as a control (CK), inorganic fertilizer (MF), straw returning (RF), and organic and inorganic fertilizer (OM). We found that abundances of cbbL, 16S rRNA genes and RubisCO activity in rhizosphere soil with OM, RF and MF treatments were significantly higher than that of CK treatment. The abundances of cbbL and 16S rRNA genes in rhizosphere soil with OM treatment were 5.46 and 3.64 times higher than that of CK treatment, respectively. Rhizosphere soil RubisCO activity with OM and RF treatments increased by 50.56 and 45.22%, compared to CK treatment. Shannon and Chao1 indices for rhizosphere soil cbbL libraries with RF and OM treatments increased by 44.28, 28.56, 29.60, and 23.13% compared to CK treatment. Rhizosphere soil cbbL sequences with MF, RF and OM treatments mainly belonged to Variovorax paradoxus, uncultured proteobacterium, Ralstonia pickettii, Thermononospora curvata, and Azoarcus sp.KH33C. Meanwhile, cbbL-carrying bacterial composition was obviously influenced by soil bulk density, rhizosphere soil dissolved organic C, soil organic C, and microbial biomass C contents. Fertilizer practices were the principal factor influencing rhizosphere soil cbbL-carrying bacterial communities. These results showed that rhizosphere soil autotrophic bacterial communities were significantly changed under conditions of different long-term fertilization practices Therefore, increasing rhizosphere soil autotrophic bacteria community with crop residue and organic manure practices was found to be beneficial for management of double rice ecosystems in southern China.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.

Evaluation of Forage Productivity and Nutritional Value of Kenaf (Hibiscus cannabinus L.) at Different Fertilizer Application Amounts and Different Stages of Maturity

  • Tomple, Byamungu Mayange;Jo, Ik-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.84-95
    • /
    • 2021
  • The purpose of this study was to assess the forage productivity and nutritive value of kenaf at different fertilizer application amounts and various stages of maturity. The experiment was conducted from May to September 2020, the amount of 80 kg of kenaf seed/ha was supplied with different types and amounts of nitrogen fertilizer and the plants were harvested at 10-day intervals from different harvesting dates (24th August and 3rd, 13th, 23rd September). According to the different fertilizer types and application amounts, the highest kenaf height was recorded in the inorganic fertilizer amounts of 200 and 250 kg N/ha and the fresh and DM yield were significantly improved in the inorganic nitrogen amount of 250 kg N/ha. The highest CP and TDN content in the leaf was achieved in the inorganic fertilizer amounts of 150 and 200 kg N/ha, respectively; and the highest TDN content in the stem was also found in the inorganic fertilizer amount of 200 kg N/ha. According to the different harvesting dates, the highest DM ratio was found in the harvesting date of 13th September, the leaf ratio increased with advanced maturity, whereas the stem ratio decreased significantly and the highest DM yield of kenaf was recorded in the harvesting dates of 13th and 23rd September. Besides, the highest CP, CF, CA, ADF, NDF and TDN content in the leaf as influenced by different harvesting dates was 15.4, 31.8, 10.2, 22.1, 34.7 and 76.5%, respectively, and the CP, CA, ADF and TDN in stem decreased significantly with advanced maturity of kenaf. In conclusion, the optimal fertilizer amounts and the appropriate harvesting dates for a high forage yield and high-quality kenaf as livestock feed were the inorganic fertilizer application amounts of 200-250 kg N/ha and from 13th and 23rd September, respectively.

Root Barrier and Fertilizer Effects on Soil CO2 Efflux and Cotton Yield in a Pecan-Cotton Alley Cropping System in the Southern United States

  • Lee, Kye-Han;An, Kiwan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.2
    • /
    • pp.177-182
    • /
    • 2006
  • Little information is available on soil $CO_2$ efflux and crop yield under agroforestry systems. Soil $CO_2$ efflux, microbial biomass C, live fine root biomass, and cotton yield were measured under a pecan (Carya illinoinensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in southern USA. A belowground polyethylene root barrier was used to isolate tree roots from cotton which is to provide barrier and non-barrier treatments. The barrier and non-barrier treatment was randomly divided into three plots for conventional inorganic fertilizer application and the other three plots for organic poultry litter application. The rate of soil $CO_2$ efflux and the soil microbial biomass C were affected significantly (P < 0.05) by the fertilizer treatment while no significant effect of the barrier treatment was occurred. Cotton lint yield was significantly (P < 0.0 I) affected by the root barrier treatment while no effect was occurred by the fertilizer treatment with the yields being greatest ($521.2kg\;ha^{-1}$) in the root barrier ${\times}$ inorganic fertilizer treatment and lowest ($159.8kg\;ha^{-1}$) in the non-barrier ${\times}$ inorganic fertilizer treatment. The results suggest that the separation of tree-crop root systems with the application of inorganic fertilizer influence the soil moisture and soil N availability, which in tum will affect the magnitude of crop yield.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

Changes of Saturated Hydraulic Conductivity of Bed-soils Mixed with Organic and Inorganic Materials

  • Lee, Jeong-Eun;Kim, Yong;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.66-70
    • /
    • 2014
  • Bed-soils can be used to help plants to overcome unfavorable conditions of soils, especially hydraulic properties of soils. This study was conducted to evaluate the effect of organic and inorganic raw materials on saturated hydraulic conductivity ($K_s$) of bed-soils. Perlite and bottom ash, which are inorganic materials, increased more $K_s$ of bed-soils than coco peat, an organic material. However, vermiculite, an inorganic material, increased less than coco peat. Saturated hydraulic conductivity of bed-soil mixed with fine vermiculite ($0.14{\pm}0.02mh^{-1}$) was much lower than one containing coarse vermiculite ($0.85{\pm}0.21mh^{-1}$). Such effect was more apparent when pressure was added on bed-soils containing fine vermiculite ($0.07{\pm}0.01mh^{-1}$), probably reflecting the decrease in pore size with the expansion of vermiculite wetted. Compacting decreased more $K_s$ in the bed-soils containing coco peat or vermiculite than other mixtures. Those results suggest that perlite and bottom ash in bed-soils play an important role in improving saturated hydraulic conductivity but vermiculite in bed-soils may suppress the improvement of saturated hydraulic conductivity with the decrease of its size and with the increase of compacting pressure.