• Title/Summary/Keyword: Inorganic Compounds

Search Result 401, Processing Time 0.028 seconds

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

Physical Properties of Functional Hanji Added Inorganic Marerials (무기물을 첨가한 기능성 한지의 특성)

  • Jo, Hyun-Jin;Yoon, Seung-Lak;Park, Soung-Bae;Kim, Yun-Geun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • Functional hanji was manufactured using the bast fiber of Broussonetia kazinoki and various inorganic compounds such as kaolin, talc, elvan, and ocher, and the physical and optical properties were investigated. The residual percentages of kaolin, talc, elvan and ocher in the functional hanji were above 50%. The density of the hanji increased with the increase of the content of inorganic compounds. The hanji manufactured using ocher showed the highest density. The breaking length and burst factor decreased with the increase of inorganic materials, indicating that physical properties of hanji were not improved by adding inorganic materials. The emission rates of far-infrared radiation increased in the hanji manufactured using inorganic materials. The higher emission rates were observed in the hanji with elvan or ocher. Addition of inorganic compounds to hanji showed the flame retardative effect. The colorfastness to light of the hanji with elvan or ocher was the degree of 4, which explained by the characteristic color of the inorganics.

Influence of Inorganic Filler on Properties of EPDM Compounds (무기 충전제가 EPDM 배합물의 특성에 미치는 영향)

  • Choi, Sung-Seen;Kim, Ok-Bae
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • EPDM compounds and vulcanizates containing inorganic filler such as talc, calcium carbonate, or clay as well as carbon black were prepared, and the influence of inorganic filler on properties of the EPDM compounds and vulcanizates were investigated. The bound rubber contents did not significantly increase even though the inorganic filler was added. There were big aggregates in the EPDM samples with high loading inorganic filler. By adding the inorganic filler, the cure times tended to increase and the delta torque decreased. The modulus were on the whole decreased, whereas the elongation at break, tensile strength, and tear strength were increased by adding the inorganic filler. The decreased modulus and increased elongation at break can be explained with the decreased delta torque, the increases of tensile strength and tear strength can be explained with the increased elongation at break. By adding the inorganic filler, level of reinforcing in the EPDM compounds did not increase and the crosslink density decreased.

Inorganic Compound and Cycloserine Composite Particles for Improved Stability (안정성 개선을 위한 무기화합물과 사이클로세린 복합 입자)

  • Dongwon Kim;Heeseo Kim;Hongjun Yoon;Hyuk Jun Cho;Sung Giu Jin
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.126-131
    • /
    • 2024
  • The aim of this study was to improve the chemical stability of cycloserine containing organic and inorganic compounds. Composite particles were manufactured with a 1:1 weight ratio of organic/inorganic compounds and cycloserine. The influence of organic/inorganic compounds on the stability of cycloserine was investigated under accelerated stress conditions at 60℃/75% RH for 24 hours. In addition, the properties of the composite particles were evaluated using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and the dissolution of the drug was assessed by preparing it as a hard capsule. Among the organic and inorganic compounds investigated, calcium hydroxide most improved the stability of cycloserine under accelerated stress conditions (53.3 ± 2.2% vs 1.7 ± 0.2%). DSC results confirmed the compatibility between calcium hydroxide and the cycloserine, and SEM results confirmed that it was evenly distributed around the cycloserine. Calcium hydroxide also showed more than 90% cycloserine dissolution within 15 minutes. Therefore, the calcium hydroxide and cycloserine composite particles may be candidates for cycloserine oral pharmaceuticals with enhanced drug stability.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

A study of the NF3 plasma etching reaction with cobalt oxide films grown on an inorganic compounds

  • Jae-Yong Lee;Kyung-Min Kim;Min-Seung Ko;Yong-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4449-4459
    • /
    • 2022
  • In this study, an NF3 plasma etching reaction with a cobalt oxide (Co3O4) films grown on the surface of inorganic compounds using granite was investigated. Experimental results showed that the etching rate can be up to 1.604 mm/min at 380 ℃ under 150 W of RF power. EDS and XPS analysis showed that main reaction product is CoF2, which is generated by fluorination in NF3 plasma. The etching rate of cobalt oxide films grown on inorganic compounds in this study was affected by surface roughness and etch selectivity. This study demonstrates that the plasma surface decontamination can effectively and efficiently remove contaminated nuclides such as cobalt attached to aggregate in concrete generated when decommissioning of nuclear power plants.

Simultaneous extraction of organic and inorganic compounds using molecularly/ion imprinted polymer

  • Yelin Lee;Hyeyoung Jung;Soomi Park;Sunyoung Bae
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.295-305
    • /
    • 2024
  • 5-Hydroxymethyl-2-furaldehyde (5-HMF) is considered one of the main quality indexes of various food products. Its metabolism in humans can potentially lead to carcinogenic compounds. Metallic ions such as Zn, Mg, Mn, and Fe have been reported to enhance 5-HMF formation. Recently, studies on adsorbents that can extract specific organic and inorganic substances with one adsorbent have been conducted. However, simultaneous analysis of organic and inorganic materials typically requires distinct pre-treatment and analytical methods, which increase a lot of labor and cost. In this study, hybrid imprinted polymer (HIP) by mixing 5-HMF imprinted polymer (FIP) and zinc ion imprinted polymer (ZIIP) were generated to extract two analytes, Zn ion and 5-HMF, simultaneously. Physicochemical characterization of HIP was conducted by Fourier-transform infrared spectroscopy, scanning electron microscopy, and sorption tests. Extraction conditions including adsorbent mixing ratio, adsorbate mixing range, and equilibrium time were optimized. Freundlich adsorption model was as the best-fitting isotherm model to elucidate the adsorption mechanism. Affinity of Zn ion and 5-HMF on HIP was superior to non-HIP. In conclusion, HIP showed reasonable feasibility that could be used as an adsorbent to be used for simultaneous extraction of organic and inorganic compounds present in the sample.

Effect of Different Carbon and Nitrogen Compounds on the Growth and Sporulation of Curvularia clavata (야자나무 고조병균(枯調病菌)의 생장(生長)과 포자형성(胞子形成)에 대한 탄소 및 질소의 효과)

  • Odigie, E.E.
    • The Korean Journal of Mycology
    • /
    • v.18 no.2
    • /
    • pp.109-114
    • /
    • 1990
  • The effect of different carbon and nitrogen compounds on the growth and sporula­tion of Curvularia clavata Alcorn (Herberium No. IMI264075) has been studied. All the carbon sources tried were well utilized by the pathogen though glucose, and sucrose supported the best growth while glucose, maltose and sucrose the sporulation of the fungus. Of the nine nitrogen compounds, L-glutamic acid supported the best growth while aspartic acid and L-glutamic acid the sporulation of the fungus. Growth and sporulation were generally better with organic than inorganic nitrogen sources. Ammonium sulphate was the best inorganic source. A sudden drop of pH value of the culture media after 4 days of incubation did not favour good growth of the fungus.

  • PDF

Effects of heavy metals on contents of various phosphate compounds and organic compounds in chlorella cells (Chlorella의 인산화합물 및 유기물함량에 미치는 중금속의 영향)

  • 이종삼;임영복
    • Korean Journal of Microbiology
    • /
    • v.20 no.1
    • /
    • pp.27-40
    • /
    • 1982
  • The effects of heavy metals on the growth rate and phosphate metabolism of Chlorella elliposidea cells were investigated. Chlorella cells were cultured in the media treated with Hg(0.3, 0.7, 0.9 ppm), Cd(1, 5, 15ppm), and Zn(1, 5, 50ppm) for 6days. Aliquots cells were taken out at the inoculation and at intervals during the culture, and measured packed cell vlolume and optical density. The inhibitions of heavy metals on the growth rate and chlorophyll contents were traced. Also after 6 days culture, the amounts of inorganic phosphate and organic compounds of various fractions in Chlorella cells were observed. The turbid effects of heavy metals on the growth rate and chlorphyll contents of Chlorella cells were in order of Hg>Cd>Zn. Because heavy metals depressed the biosynthesis of inorganic polyphosphates and nucleic acids and turn over of inorganic phosphates, the amounts of various phosphate compounds were decreased. The inhibitory effect of photosynthesis by heavy metals resulted in lower contents of carbohydrate. Due to the turbidity of biosynthesis of amino acids by heavy metals, contents of protein were reduced in comparison with those of control. It is suggested conciusively that the minimum concentrations affected by heavy metals on the growth rate and phosphate metabolism of Chlorella cells were 0.7 ppm Hg, 15ppm Cd, 50ppm Zn.

  • PDF