• Title/Summary/Keyword: Inoculum potential

Search Result 83, Processing Time 0.021 seconds

Studies on Neck Blast Infection of Rice Plant (벼 이삭목도열병(病)의 감염(感染)에 관(關)한 연구(硏究))

  • Kim, Hong Gi;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.206-241
    • /
    • 1985
  • Attempts to search infection period, infection speed in the tissue of neck blast of rice plant, location of inoculum source and effects of several conditions about the leaf sheath of rice plants for neck blast incidence have been made. 1. The most infectious period for neck blast incidence was the booting stage just before heading date, and most of necks have been infected during the booting stage and on heading date. But $Indica{\times}Japonica$ hybrid varieties had shown always high possibility for infection after booting stage. 2. Incubation period for neck blast of rice plants under natural conditions had rather a long period ranging from 10 to 22 days. Under artificial inoculation condition incubation period in the young panicle was shorter than in the old panicle. Panicles that emerged from the sheath of flag leaf had long incubation period, with a low infection rate and they also shown slow infection speed in the tissue. 3. Considering the incubation period of neck blast of rice plant, we assumed that the most effective application periods of chemicals are 5-10 days for immediate effective chemicals and 10-15 days for slow effective chemicals before heading. 4. Infiltration of conidia into the leaf sheath of rice plant carried out by saturation effect with water through the suture of the upper three leaves. The number of conidia observed in the leaf sheath during the booting stage were higher than those in the leaf sheath during other stages. Ligule had protected to infiltrate of conidia into the leaf sheath. 5. When conidia were infiltrated into the leaf sheath, the highest number of attached conidia was observed on the panicle base and panicle axis with hairs and degenerated panicle, which seemed to promote the infection of neck blast. 6. The lowest spore concentration for neck blast incidence was variable with rice varietal groups. $Indica{\times}Japonica$ hybrid varieties were infected easily compared to the Japonica type varieties, especially. The number of spores for neck blast incidence in $Indica{\times}Japonica$ hybrid varieties was less than 100 and disease index was higher also in $Indica{\times}Japonica$ hybrid than in Japonica type varieties. 7. Nitrogen content and silicate content were related with blast incidence in necks of rice plants in the different growing stage changed during growing period. Nitrogen content increased from booting stage to heading date and then decreased gradually as time passes. Silicate content increased from booting stage after heading with time. Change of these content promoted to increase neck blast infection. 8. Conidia moved to rice plant by ascending and desending dispersal and then attached on the rice plant. Conidia transfered horizontally was found very negligible. So we presumed that infection rate of neck blast was very low after emergence of panicle base from the leaf sheath. Also ascending air current by temperature difference between upper and lower side of rice plant seemed to increase the liberation of spores. 9. Conidial number of the blast fungus collected just before and after heading date was closely related with neck blast incidence. Lesions on three leaves from the top were closely related with neck blast incidence, because they had high potential for conidia formation of rice blast fungus and they were direct inoculum sources for neck blast. 10. The condition inside the leaf sheath was very favorable for the incidence of neck blast and the neck blast incidence in the leaf sheath increased as the level of fertilizer applied increased. Therefore, the infection rate of neck blast on the all panicle parts such as panicle base, panicle branches, spikelets, nodes, and internodes inside the leaf sheath didn't show differences due to varietal resistance or fertilizers applied. 11. Except for others among dominant species of fungi in the leaf sheath, only Gerlachia oryzae appeared to promote incidence of neck blast. It was assumed that days for heading of varieties were related with neck blast incidence.

  • PDF

Epidemiology and Control of Rice Blast in Korea (한국(韓國)에서의 도열병(病) 발생(發生), 만연(蔓延)과 그 방제(防除))

  • Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.356-369
    • /
    • 1985
  • In Korea, inevitable researches for the blast control exactly started from 1927 by the organization of Office of Rural Development with the local extensive outbreak of panicle blast at Jeonlla Buk-Do Province in 1926. At present, the rice blast is still one of the most destructive and widespread diseases in spite of considerable contributions by rice scientists, particularly plant pathologists during last 55 years in Korea. Rice blast control and management are very difficult because of the marked variability in pathogenicity of the blast fungus. From the results obtained through the disease surveys during last 70 years, different 3 prevalence type of blast such as bimodal leaf-blast type, bimodal panicle-blast type and bimodal continual blast type were recognized. In generally speaking, pattern of blast outbreak is said to be characterized by severe outbreak of panicle blast after slight outbreak of leaf blast with discontinuity between leaf and panicle blast. So we have to pay much attention for successful management of panicle blast giving direct influence to rice yield. Main factors induce blast epidemic were pointed out to be breakdown of the disease resistance, nutritional unbalance such as excess application of nitrogen, delay of transplantation and longspell of rain fall by extensive surveys and researches on blast during last 70 years in Korea. The fact some of Japonica varieties such as Kokuryomiyako, Tamanishiki, Ginbozu and Pungok belong to varietal group A had been cultivated with extensive acrage over 30 years in this country should be mentioned by Korean rice scientists. Differences in field resistance between varieties in the same group are detectable and apparently small but sometimes epidemiologically significant differential effects may be found out in case of blast. Much more attention should be payed to accumulate the knowledges on field resistance for successful management of blast. Excess application of nitrogen is more effective to outbreak of panicle blast than that of leaf blast of IR varieties. In comparatively low level application of nitrogen infection rate of panicle blast of IR varieties is considerably high. Low temperature effects on outbreak of blast is very great. It results in remarkable increase of the inoculum potential on the leaf lesions and infection of panicle blast in leaf sheathes of IR varieties during the booting stage. In economic point of view, it is concluded that 5 times sprays of effective fungicides including 3 times before and 2 times after heading is good enough to control blast. We have experienced no one of control measures for blast is superior to all others. The integrated control measures was established as guideline of blast control around 1950 in Korea. This guideline must be helpful for rice growers as long as rice growing continue.

  • PDF

Measuring Intracellular Mycobacterial Killing Using a Human Whole Blood Assay (인체 전혈 모델을 이용한 세포내 결핵균 살균력에 관한 연구)

  • Cheon, Seon-Hee;Song, Ho-Yeon;Lee, Eun-Hee;Oh, Hee-Jung;Kang, In-Sook;Cho, Ji-Yoon;Hong, Young-Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.497-509
    • /
    • 2002
  • Background : The mechanisms through which cellular activation results in intracellular mycobacterial killing is only partially understood. However, in vitro studies of human immunity to Mycobacterium tuberculosis have been largely modeled on the work reported by Crowle, which is complicated by several factors. The whole blood culture is simple and allows the simultaneous analysis of the relationship between bacterial killing and the effect of effector cells and humoral factors. In this study, we attempted to determine the extent to which M. tuberculosis is killed in a human whole blood culture and to explore the role of the host and microbial factor in this process. Methods : The PPD positive subject were compared to the umbilical cord blood and patients with tuberculosis, diabetes and lung cancer. The culture is performed using heparinized whole blood diluted with a culture medium and infected with a low number of M. avium or M. tuberculosis $H_{37}Ra$ for 4 days by rotating the culture in a $37^{\circ}C$, 5% $CO_2$ incubator. In some experiments, methlprednisolone- or pentoxifyline were used to inhibit the immune response. To assess the role of the T-cell subsets, CD4+, CD8+ T-cells or both were removed from the blood using magnetic beads. The ${\Delta}$ log killing ratio was defined using a CFU assay as the difference in the log number of viable organisms in the completed culture compared to the inoculum. Results : 1. A trend was noted toward the improved killing of mycobacteria in PPD+ subjects comparing to the umbilical cord blood but there was no specific difference in the patients with tuberculosis, diabetes and lung cancer. 2. Methylprednisolone and pentoxifyline adversely affected the killing in the PPD+ subjects umbilical cord blood and patients with tuberculosis. 3. The deletion of CD4+ or CD8+ T-lymphocytes adversely affected the killing of M. avium and M. tuberculosis $H_{37}Ra$ by PPD+ subjects. Deletion of both cell types had an additive effect, particularly in M. tuberculosis $H_{37}Ra$. 4. A significantly improved mycobacterial killing was noted after chemotherapy in patients with tuberculosis and the ${\Delta}$ logKR continuously decreased in a 3 and 4 days of whole blood culture. Conclusion : The in vitro bactericidal assay by human whole blood culture model was settled using a CFU assay. However, the host immunity to M. tuberculosis was not apparent in the human whole blood culture bactericidal assay, and patients with tuberculosis showed markedly improved bacterial killing after anti-tuberculous chemotherapy compared to before. The simplicity of a whole blood culture facilitates its inclusion in a clinical trial and it may have a potential role as a surrogate marker in a TB vaccine trial.