• Title/Summary/Keyword: Inoculum potential

Search Result 83, Processing Time 0.027 seconds

Influence of Water Potential in Potato Tuber on Decay Development by Bacterial Soft Rot Caused by Erwinia carotovora var. atroseptica (감자연부병 (Erwinia carotovora var. atroseptica)에 의한 감자괴경부패와 water potential 에 관한 연구)

  • Hahm Young Il
    • Korean journal of applied entomology
    • /
    • v.23 no.4 s.61
    • /
    • pp.242-246
    • /
    • 1984
  • Results obtained from the experiment conducted to find out e relationships between tuber decay, and water potential and bruising in or on the tubers, are summerized as follows ; 1) When potato tubers were bruised or injected with bacterial inoculum, the tubers with high water potential rotted more easily than the tubers with low potential. A big difference in the development of decay between high and low water potential tubers was found. 2) In tubers injected with different levels of inoculum. high water potential tubers were more susceptible to soft rot than low water potential tubers. 3) $ED_{50}$ of inoculum concentration was 8.5(log) at high water potential tubers and 9.8(log) at low water potential. A small difference between low and high water potential was detected. The results of this experiment show that potatoes should be handled carefully and must be dried after harvest to reduce decay development in shipment and storage.

  • PDF

Effect of Inoculum and Carbon Sources Difference on Characteristics of Anaerobic Digestion (접종원 및 탄소원의 차이가 혐기소화 특성에 미치는 영향)

  • Choi, Yong Jun;Ryu, Jeong Won;Lee, Sang Rak
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.5
    • /
    • pp.474-481
    • /
    • 2017
  • This study was conducted to investigate the effects of inoculum and carbon sources on anaerobic digestion characteristics. The treatments were combinations of inoculum (digestate of cattle manure and rumen fluid) with carbon sources (starch, cellulose, and xylan). Anaerobic digestion was performed in triplicate at $37^{\circ}C$ for 18 days at 100 rpm. Sampling was performed at 0, 1, 2, 3, 4, 5, 7, 9, 12, 15, and 18 days to measure pH, ammonia-N, volatile solids reduction, the cumulative methane content, and the cumulative methane production. There was a significant difference in methane content depending on the carbon source and there was a significant difference in pH, ammonia-N, methane production, and methane content depending on the inoculum (P < 0.05). The results of methane production were higher in the digestate of cattle manure treatment than in the rumen fluid treatment (P < 0.05). In this study, different digestive patterns depending on the type of carbon source could be used as basic research data to set the hydraulic residence time of anaerobic digestion facilities. In addition, the use of ruminal fluid as an inoculum may help accelerate the hydrolysis and acid production steps.

Characteristics of Indigenous Rhizobium to Korean Soils -I. Symbiotic Potentials of Bradyrhizobium japonicum Populations and Their Colony Morphological Characteristics in Yeongnam Soils (우리나라 토착근류균(土着根瘤菌)의 제(諸) 특성(特性) 연구(硏究) -I. 영남지역(嶺南地域) 토착(土着) 대두근류균(大豆根瘤菌)의 접종효과(接種效果)와 취락형태적(聚落形態的) 분포특성(分布特性))

  • Kang, Ui-Gum;Somasegaran, Padma;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 1990
  • Soybean [Glycin max (L.)] cv. Jangbaekkong was inoculated with 5 cultivated- and 5 uncultivated upland soils, in Yeongnam area, as soil inoculum and NifTAL peat inoculum as standard for soil inoculum potentials by Bradyrhizobium japonicum. 120 Bradyrhizobium japonicum isolates out of the soil populations were scored of three colony morphologies, designed "Dry", "Wet", and "Dry/Wet", and symbiotic effectiveness between "Dry" and "Wet" was compared. The results obtained were summarized as follows: 1. Indigenous populations of B. japonicum were above $10^4cells/g$. soil at the cultivated upland soils but were a few at the uncultivated upland soils except a colluvivum, orchard previously, in Yeongnam area. 2. Inoculum potentials of the cultivated upland soils were higher than the NifTAL inoculum and generally, nodule mass compensated nodule number for symbiotic effectiveness of soil populations. 3. Colony morphologies of soil populations showed the different proportions of "Dry" and "Wet" so that "Dry" types were dominant at the cultivated upland soils while "Wet" types at the uncultivated upland soils. 4. "Dry" colony morphology significantly exhibited higher symbiotic effectiveness than "Wet" types in nodule fresh weight, shoot dry weight, and shoot dry weight/nodule fresh weight. Therefore, as long as soil inoculum potentials, the growth of soybean at the cultivated upland soils could presumedly be affected by soil populations of Bradyrhizobium japonicum of "Dry" colony morphology.

  • PDF

Effects of Organic Farming on Communities of Arbuscular Mycorrhizal Fungi

  • Lee, Si-Woo;Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • Red pepper (Capsicum annum L.) roots and soils representing different agricultural management practices such as conventional (CON), no-chemical (NOC), and organic farming systems (ORG) were collected from 32 farm field sites in Kyunggi, Korea to investigate the effects of these agricultural practices on arbuscular mycorrhizal (AM) symbiosis. ORG inoculum significantly increased plant growth compared to inoculum from CON and NOC. A community analysis of AM fungi (AMF) using morphological features of spores revealed that AMF spore abundance and species diversity were significantly higher in ORG than in CON. Additionally, a community analysis of AMF colonizing roots using a molecular technique revealed higher AMF diversity in ORG than in CON. These results suggest that agricultural practices significantly influence AM fungal community structure and mycorrhizal inoculum potential.

Evaluation of Chemical Composition and In vitro Digestibility of Appennine Pasture Plants Using Yak (Bos grunniens) Rumen Fluid or Faecal Extract as Inoculum Source

  • Tufarelli, V.;Cazzato, E.;Ficco, A.;Laudadio, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1587-1593
    • /
    • 2010
  • Pastures of the Apennines of Central Italy contribute to feed resources of high altitude (above 1,300 m sea level) grazing systems. The objective of this study was to evaluate the effectiveness of faecal extract from the yak (Bos grunnienes) as an alternative microbial inoculum to rumen fluid for estimation of digestibility of several forage species. Forage samples produced at high altitude were tested in this study: four legumes (Lathyrus sativus L., Lotus corniculatus L., Onobrychis viciaefolia L. and Trifolium pratense L.), three forbs (Achillea millefolium L., Potentilla reptans L. and Teucrium flavum L.) and one grass (Brachipodyum pinnatum L.) were incubated with yak rumen fluid or faecal extract. A large variability in chemical composition was observed among the species collected. Rumen liquor and faecal samples were collected from adult healthy yak. The $Daisy^{II}$ incubator was used to evaluate the nutrient digestibility of forages using rumen liquor as control and faecal extract as alternative microbial inoculum sources. Filter bags containing samples of browse species were added to the four digestion vessels along with their respective inoculum and then incubated for 48 h and dry matter (DM), organic matter (OM), crude protein (CP), neutral and detergent fiber (NDF) digestibility was determined. There was a significant relationship between estimates, indicating that faecal liquor has the potential to be used instead of rumen fluid for estimation of in vitro digestibility of plants. It is concluded that the $Daisy^{II}$ incubator results are appropriate for the determination of in vitro digestibility of nutrients using faecal liquor to define the potential for adaptation of yak to new pastures.

Biocontrol Efficacies of Bacillus Species Against Cylindrocarpon destructans Causing Ginseng Root Rot

  • Jang, Ye-Lim;Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.333-341
    • /
    • 2011
  • Two antifungal bacteria were selected from forest soils during the screening of microorganisms antagonistic to Cylindrocarpon destructans, a cause of ginseng root rot. The antifungal bacteria were identified as Bacillus subtilis (I4) and B. amyloliquefaciens (yD16) based on physiological and cultural characteristics, the Biolog program, and 16S rRNA gene sequencing analyses. Antagonistic activity of both bacterial isolates to C. destructans increased with increasing temperature. More rapid starch hydrolytic activity of the bacteria was seen on starch agar at higher temperatures than at lower temperatures, and in the higher density inoculum treatment than in the lower density inoculum treatment. The bacterial isolates failed to colonize ginseng root the root tissues inoculated with the bacteria alone at an inoculum density of $1{\times}10^6$ cfu/ml, but succeeded in colonizing the root tissues co-inoculated with the bacteria and C. destructans. Scanning electron microscopy showed that the pathogen was damaged by the low-density inoculum treatment with the bacterial isolates as much as by the high-density inoculum treatment. Both bacterial isolates were more effective in reducing root rot when they were treated at a concentration of $1{\times}10^6$ cfu/ml than at $1{\times}10^8$ cfu/ml. Also, only the former treatment induced prominent wound periderm formation, related to structural defense against pathogen infection. The results suggest that the bacterial antagonists may have high potential as biocontrol agents against ginseng root rot at relatively low-inoculum concentrations.

Spore Inoculum Optimization to Maximize Cyclosporin A Production in Tolypocladium niveum

  • Lee, Mi-Jin;Lee, Han-Na;Han, Kyu-Boem;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.913-917
    • /
    • 2008
  • The cyclic undecapeptide, cyclosporin A (CyA), is one of the most commonly prescribed immunosuppressive drugs. It is generated nonribosomally from a multifunctional cyclosporin synthetase enzyme complex by the filamentous fungus Tolypocladium niveum. In order to maximize the production of CyA by wild-type T. niveum (ATCC 34921), each of three culture stages (sporulation culture, growth culture, and production culture) were sequentially optimized. Among the three potential sporulation media, the SSMA medium generated the highest numbers of T. niveum spores. The SSM and SM media were then selected as the optimal growth and production culture media, respectively. The addition of valine and fructose to the SM production medium was also determined to be crucial for CyA biosynthesis. In this optimized three-stage culture system, 3% of the spore inoculum generated the highest level of CyA productivity in a 15-day T. niveum production culture, thereby implying that the determination of an appropriate size of T. niveum spore inoculum plays a critical role in the maximization of CyA production.

Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes

  • Yoon, Young-Man;Kim, Seung-Hwan;Shin, Kook-Sik;Kim, Chang-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.600-607
    • /
    • 2014
  • The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability ($D_{deg}$) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities ($D_{deg}$) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and $1.076Nm^3kg^{-1}-VS_{added}$, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and $0.517Nm^3kg^{-1}-VS_{added}$ for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay.

Relationship between Virulence and Cultural Characteristics in Calonectria ilicicola (Calonectria ilicicola의 병원성과 배양적 특성간의 상호관계)

  • Kim, K.D.;Russin, J.S.;Snow, J.P.;Valverde, R.A.
    • The Korean Journal of Mycology
    • /
    • v.26 no.3 s.86
    • /
    • pp.387-395
    • /
    • 1998
  • Mycelial growth, production of microsclerotia and perithecia, and presence of double-stranded RNA were examined in Calonectria ilicicola isolates from several hosts to detect morphological and/or genetic markers for comparison with levels of virulence. Variability in disease severity, production of microsclerotia and perithecia, and mycelial growth was observed across all isolates. None of 35 isolates of C. ilicicola examined contained detectable levels of double-stranded RNA. Disease severity on soybean cultivars correlated positively with production of both microsclerotia and perithecia. Mycelial growth correlated negatively with production of perithecia. Virulence on the cultivars and production of microsclerotia and perithecia were greater in isolates of C. ilicicola from soybean than those from peanut. These results suggest that the ability of isolates to produce microsclerotia and perithecia is a component of inoculum potential. Perithecia production may serve as a useful marker for characterizing virulence or host specialization in this homothallic fungus.

  • PDF

Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge (기질과 접종액의 비율이 도계 가공장 슬러지 열가수분해액의 메탄생산퍼텐셜에 미치는 영향)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2016
  • BACKGROUND: Anaerobic digestion is the most feasible technology because not only the energy embedded in organic matters can be recovered, but also they are stabilized while being degraded. This study carried out to improve methane yield of slaughterhouse wastewater treatment sludge cake by the thermal pre-treatment prior to anaerobic digestion.METHODS AND RESULTS: Slaughterhouse wastewater treatment sludge cake was pre-treated by the closed hydrothermal reactor at reaction temperature of 190℃. BMPs (Biochemical methane potential) of the thermal hydrolysate was tested in the different S(Substrate)/I(Inoculum) ratio conditions. COD(Chemical oxygen demand) and SCOD(Soluble chemical oxygen demand) contents of thermal hydrolysate were 10.99% and 10.55%, respectively, then, the 96.00% of COD was remained as a soluble form. The theoretical methane potential of thermal hydrolysate was 0.51 Nm3 kg-1-VSadded. And BMPs were decreased from 0.56 to 0.22 Nm3 kg-1-VSadded when S/I ratio were increased from 0.1 to 2.0 in the VS content basis. Those were decreased from 0.32 to 0.13 Nm3 kg-1-CODadded when S/I ratio were increased from 0.1 to 2.0 based on COD content. The anaerobic degradability of VS basis have showed 196.9%, 102.2%, 80.7%, 67.4%, and 39.4% in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively. Also the COD of 119.6%, 76.3%, 70.1%, 69.0%, and 43.1% were degraded anaerobically in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively.CONCLUSION: BMPs obtained in the S/I ratios of 0.1 and 0.3 was overestimated by the residual organic matters remaining at the inoculum. And inhibitory effect was observed in the highest S/I ratio of 2.0. The optimum S/I ratios giving reasonable BMPs might be in the range of 0.5 and 1.0 in S/I ratio. Therefore VS biodegradability of thermal hydrolysate was in 67.4-80.7% and COD biodegradability showed 69.0-70.1%.