• Title/Summary/Keyword: Inoculated seedlings

Search Result 207, Processing Time 0.025 seconds

Evaluation of a Fungal Strain, Myrothecium roridum F0252, as a Bioherbicide Agent

  • Lee, Hyang-Burm;Kim, Jin-Cheol;Hong, Kyung-Sik;Kim, Chang-Jin
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.453-460
    • /
    • 2008
  • In the course of in vitro and in vivo screening for bioherbicidal agents, a hyphomycete fungus, Myrothecium sp. F0252 was selected as a candidate for the biocontrol of weeds. The isolate was identified as Myrothecium roridum Tode ex. Fries based on the morphological characteristics and 18S ribosomal DNA sequence analysis and registered as Myrothecium roridum F0252. In order to evaluate the in vitro effect of M. roridum F0252 on germination of ladino clover and white clover (Trifolium repens L.) seeds, spore solution of the fungus was employed in two concentrations, $6.5{\times}10^6$ and $2.5{\times}10^7$ spores per mL and then inoculated to the seeds. The fungal spores inhibited the seed germination, infected the seedlings, and caused an abnormal withering and inhibition of seedling growth. In addition, when the herbicidal activity of crude ethyl acetate extract from the liquid culture was assessed on a mini-plant, duck-weed (Lemna paucicostata (L.) Hegelm.), the extract showed high inhibitory effect at the level of $12.5{\mu}g$ per mL. On the other hand, in vivo herbicidal activity of M. roridum F0252 was evaluated by a whole plant spray method. M. roridum F0252 exhibited strong and broad-spectrum herbicidal activity. The herbicidal values ranged from 95-100% against 7 weeds, including Abutilon avicennae and Xanthium strumarium, and 70-80% against Digitaria sanguinalis and Sagittaria pygmaea. When the nutritional utilization (95 carbon sources) pattern of M. roridum F0252 was investigated, it varied with water activity ($a_w$) and temperature conditions, supplying good, basic information in regard to nutritional utilization for proper cultivation and formulation. Our results showed that M. roridum F0252 might be used as a potential biocontrol agent against weedy plants.

Ultraviolet Wave Length Effective in the Sporulation of Didymella bryoniae, a Gummy Stem Blight Fungus in Cucurbits, and the Disease Control Effect by the Use of Ultraviolet Light-Absorbing Vinyl Film (박과작물 덩굴마름병권 Didymella bryoniae의 포자형성 유효 자외파장과 자외선 흡수필름을 이용한 병 방제효과)

  • 권미경;홍정래;기운계;조백호;김기청
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.20-26
    • /
    • 1999
  • Ultraviolet light is required for the sporulation of Didymella bryoniae, a gummy stem blight fungus in cucurbits such as watermelon, melon, oriental melon, cucumber and pumpkin. In this experiment, the upper limit of wave length for the production of pycnidia of D. bryoniae was 365 nm - 375 nm. Two plastic houses were covered with either common transparent film (wave length longer than 225 nm is transmitted) or UV-absorbing film ( wave lenght shorter than 388 nm is absorbed). In both houses, seedlings inoculated with D. bryoniae were placed in the center of the house at 30 days after transplantation of watermelon (cv. Whanhoseong), and the disease incidences between the houses were compared until 80 days after transplantation. The number of disease lesions and incidence of pycnidia-producing lesions under the UV-absorbing film were reduced by 90% and 80%, respectively, compared to the common transparent film. The internode lengths of plants grown in the two houses were not significantly different, but the plants grown under the UV-absorbing film had longer vines and more leaves than plants under the common transparent film. However, fruit characters such as weight, length, width, rind thick and brix, were not different between the two houses. Occurrence of aphids was reduced in the UV-absorbing film, but those of mites or diseases (powdery mildew and sooty mold) were not different between the houses. These results suggest that disease incidence of gummy stem blight of watermelon in the greenhouse can be controlled by the use of UV-absorbing film.

  • PDF

Effect of Density of Helicotylenchus dihystera on Growth of Solanum lycopersicum (나선선충 접종 밀도가 토마토 생육에 미치는 영향)

  • Kim, Donggeun;Ryu, Younghyun;Lee, Younsu;Choi, Insoo;Hu, Changsuk
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.107-111
    • /
    • 2014
  • A greenhouse experiment was conducted to examine the effect of initial population density (Pi) of Helicotylenchus dihystera on six commercial tomato cultivars. Two-week-old tomato seedlings of six commercial cultivars were transplanted in d-10-cm clay pot and was inoculated with to give 0, 0.02, 0.2, and 2 nematodes/g soil. Plants were grown in a greenhouse for 60 days. Root and plant weights were unaffected but plant height declined only at inoculum level of 2 nematodes/g soil. At the highest initial population density (2 nematodes/g soil), plant height of tomato cv. Poseidon was reduced by 24%. Tomato cv. Hoyong produced the most nematodes with 7.0 nematodes/g soil and the least was tomato cv. Miniheuksu with 2.2 nematodes/g soil.

Suppression of Meloidogyne incognita in Lettuce and Oriental Melon by Pasteuria penetrans KW1

  • Lim, Chun-Keun;Yu, Yong-Man;Cho, Myoung-Rea;Zhu, Yong-Zhe;Park, Duck-Hwan;Hur, Jang-Hyun
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.177-180
    • /
    • 2003
  • Pasteuria penetrans KW1 (PP), parasitic bacterium of nematode, was isolated from oriental melon greenhouse soil in Korea and evaluated for the suppression effect on the reproduction of southern root-knot nematode, Meloidogyne incognita (MI), in lettuce (Lactuca sativa L. var. Chungchima) and oriental melon (Cucumis melo L. var. Eunchun). Pot experiments were conducted by planting the lettuce seedlings in medium inoculated with 5,000 MI juveniles/pot (J), J +100,000 PP endospores/l g medium, and J +200,000 PP endospores/1 g medium. After 11 weeks of plantation, number of root galls in J +200,000 PP endospores/1 g medium was decreased to 92/root (38.9%, control effect), compared to the J of 150/root. In the second plantation of lettuce in the same pots, the numbers of root gall were significantly decreased in PP treated pots with 75 (77.2%, control effect) and 150/root (54.4%, control effect) in J +200,000 and J +100,000 PP endospores/1 g medium, respectively, compared to the J of 330/root when harvested at 10 weeks after planting. In oriental melon, root gall percentages were 32.1 (60.2%, control effect) and 52.9% (34.5%, control effect) in J +200,000 and J + 1(10,000 endospores/l g medium which were significantly lower than that of 80.7% in J.

A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

  • Shin, Sanghyun;Kim, Kyeong-Hoon;Kang, Chon-Sik;Cho, Kwang-Min;Park, Chul Soo;Okagaki, Ron;Park, Jong-Chul
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Fusarium head blight (FHB; scab) caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON) which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05). Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry) and FHB resistance (Type I and Type II), respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

Inhibition of Seed Germination and Induction of Systemic Disease Resistance by Pseudomonas chlororaphis O6 Requires Phenazine Production Regulated by the Global Regulator, GacS

  • Kang, Beom-Ryong;Han, Song-Hee;Zdor, Rob E.;Anderson, Anne J.;Spencer, Matt;Yang, Kwang-Yeol;Kim, Yong-Hwan;Lee, Myung-Chul;Cho, Baik-Ho;Kim, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.586-593
    • /
    • 2007
  • Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P. chlororaphis O6 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P. chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

Pathogenicity and Host Range of a Potential Mycoherbicide, Isolate BWC98-105, Causing White Root Rot on Trifoliorum repens

  • Hong, Yeon-Kyu;Cho, Jae-Min;Lee, Bong-Choon;Song, Seok-Bo;Park, Sung-Tae
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.58-62
    • /
    • 2004
  • White root rot of wild white clover (Trifoliorum repens) caused by isolate BWC98-105 has been first reported in Korea. Typical symptoms on root include water-soaked and dark-brown rot, resulting in complete blight of the whole plant. The fungus grew well at $20-28^{\circ}C$ and produced abundant sclerotia at 10-15 days after full mycelial growth on potato dextrose agar. Sclerotia were brown to dark-brown in color and 1-3 mm in length. When white clover plants were inoculated with mycelial suspension ($10^5$ cfu/ml) of isolate BWC98-105, the plant shoots were killed within 4-6 days and the roots were completely blighted. Sclerotia were also formed on the surface of the root covered with whitish mycelia within 10-15 days in the field. All nine isolates developed high incidences of white root rot disease on white clover seedlings, of which the symptoms were similar to those observed in the fields. Hence, their pathogenicity was confirmed on white clover. The infection rate of the fungal isolates varied from 78.5% to 95.2%, among which BWC98-105 was the most virulent isolate. The weeding efficacy of the fungus was maintained until the following year, leading to a significant reduction of reshooting. The fungus was specifically parasitic to white clover, but not to four lawn species including zoysiagrass (Zoysia japonica) under greenhouse test. The fungus also had no response to some Gramineae species including rice, but caused little damage to five species of Leguminosae.

Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus

  • Phung, Manh Hung;Wattanachai, Pongnak;Kasem, Soytong;Poeaim, Supattra
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.288-296
    • /
    • 2015
  • Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of $2.6{\sim}101.4{\mu}g/mL$. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen.

Pathogenesis strategies and regulation of ginsenosides by two species of Ilyonectria in Panax ginseng: power of speciation

  • Farh, Mohamed El-Agamy;Kim, Yu-Jin;Abbai, Ragavendran;Singh, Priyanka;Jung, Ki-Hong;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.332-340
    • /
    • 2020
  • Background: The valuable medicinal plant Panax ginseng has high pharmaceutical efficacy because it produces ginsenosides. However, its yields decline because of a root-rot disease caused by Ilyonectria mors-panacis. Because species within Ilyonectria showed variable aggressiveness by altering ginsenoside concentrations in inoculated plants, we investigated how such infections might regulate the biosynthesis of ginsenosides and their related signaling molecules. Methods: Two-year-old ginseng seedlings were treated with I. mors-panacis and I. robusta. Roots from infected and pathogen-free plants were harvested at 4 and 16 days after inoculation. We then examined levels or/and expression of genes of ginsenosides, salicylic acid (SA), jasmonic acid (JA), and reactive oxygen species (ROS). We also checked the susceptibility of those pathogens to ROS. Results: Ginsenoside biosynthesis was significantly suppressed and increased in response to infection by I. mors-panacis and I. robusta, respectively. Regulation of JA was significantly higher in I. robusta-infected roots, while levels of SA and ROS were significantly higher in I. mors-panacis-infected roots. Catalase activity was significantly higher in I. robusta-infected roots followed in order by mock roots and those infected by I. mors-panacis. Moreover, I. mors-panacis was resistant to ROS compared with I. robusta. Conclusion: Infection by the weakly aggressive I. robusta led to the upregulation of ginsenoside production and biosynthesis, probably because only a low level of ROS was induced. In contrast, the more aggressive I. mors-panacis suppressed ginsenoside biosynthesis, probably because of higher ROS levels and subsequent induction of programmed cell death pathways. Furthermore, I. mors-panacis may have increased its virulence by resisting the cytotoxicity of ROS.

Synergistic Phosphate Solubilization by Burkholderia anthina and Aspergillus awamori

  • Walpola, Buddhi Charana;Jang, Hyo-Ju;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.117-121
    • /
    • 2013
  • Single or co-inoculation of phosphate solubilizing bacterial and fungal strains (Burkholderia anthina and Aspergillus awamori respectively) was performed separately to assess their synergistic and antagonistic interactions and the potential to be used as bio-inoculants. Co-inoculation was found to release the highest content of soluble phosphorus (1253 ${\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of fungal strain (1214 ${\mu}g\;ml^{-1}$) and bacterial strain (997 ${\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of fungal strain and co-inoculation of fungal and bacterial strain in terms of the phosphorous release. The highest pH reduction, organic acid production and glucose consumption were observed in the sole A. awamori inoculated culture medium. According to the plant growth promotion bioassays, co-inoculation of the microbial strains resulted in 21% and 43% higher shoot and root growth of the mung bean seedlings respectively as compared to the respective controls. Therefore, co-inoculation of B. anthina and A. awamori showed better performance in stimulating plant growth than that in inoculation of each strain alone. However, assessment period of the present study being short, we recommend in engaging further experimentation under field conditions in order to test the suitability of the strains to be used as bio-inoculants.