• Title/Summary/Keyword: Inner structure wall

Search Result 122, Processing Time 0.029 seconds

A Study on the Development of the System for Inspecting Cracks in the Inner Wall for Structures (구조물 내벽의 균열 검사를 위한 시스템 개발에 관한 연구)

  • 이상호;신동익;손영갑;이강문;마상준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.480-483
    • /
    • 1997
  • In this paper, we have proposed an automatic inspection system for cracks on the surface of a structure. The proposed system consists of the imaging system and the veh~cle system. The imaging system. a set of optical sensor, lens, illuminator, storage and their configuration, images the scene and store it on the hard disk. We adopted a linescan camera of 5000 pixel density to achieve high resolution without loss of simplicity. The vehicle system that moves the optical system IS ~mplemented by an AGV. The AGV moves forward at constant velocity and avoid obstacles to acquire a stable image. We have cmplemented an experimental system and have acquired images of the wall of hallway. The image is of 0.1-mmipixel resolution and the scanning time IS about 1 mlsec. The allow able scan.

  • PDF

Template Synthesis of Nitrogen-Doped Short Tubular Carbons with Big Inner Diameter and their Application in Electrochemical Sensing

  • Cheng, Rui;Zou, Qiong;Zhang, Xiaohua;Xiao, Chunhui;Sun, Longfei;Chen, Jinhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2423-2430
    • /
    • 2014
  • Nitrogen-doped short tubular carbons (N-STCs) with big inner diameter have been successfully synthesized via carbonization of polydopamine (PDA) wrapped halloysite nanotubes (HNTs). The obtained N-STCs have average length of $0.3{\mu}m$ with big inner diameter (50 nm), thin wall (2-3 nm) and large surface area ($776m^2g^{-1}$), and show excellent electrochemical properties. As an example in electrochemical applications, N-STCs were used to electrochemically detect hydrogen peroxide ($H_2O_2$) and glucose. The results showed that the N-STCs modified glassy carbon (N-STCs/GC) electrode had much better analytical performance (lower detection limit and wider linear range) compared to the acid-treated carbon nanotubes (AO-CNTs) based GC electrode. The unique structure endows N-STCs the enhanced electrochemical performance and promising applications in electrochemical sensing.

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

Numerical analysis of temperature fluctuation characteristics associated with thermal striping phenomena in the PGSFR

  • Jung, Yohan;Choi, Sun Rock;Hong, Jonggan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3928-3942
    • /
    • 2022
  • Thermal striping is a complex thermal-hydraulic phenomenon caused by fluid temperature fluctuations that can also cause high-cycle thermal fatigue to the structural wall of sodium-cooled fast reactors (SFRs). Numerical simulations using large-eddy simulation (LES) were performed to predict and evaluate the characteristics of the temperature fluctuations related to thermal striping in the upper internal structure (UIS) of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Specific monitoring points were established for the fluid region near the control rod driving mechanism (CRDM) guide tubes, CRDM guide tube walls, and UIS support plates, and the normalized mean and fluctuating temperatures were investigated at these points. It was found that the location of the maximum amplitude of the temperature fluctuations in the UIS was the lowest end of the inner wall of the CRDM guide tube, and the maximum value of the normalized fluctuating temperatures was 17.2%. The frequency of the maximum temperature fluctuation on the CRDM guide tube walls, which is an important factor in thermal striping, was also analyzed using the fast Fourier transform analysis. These results can be used for the structural integrity evaluation of the UIS in SFR.

Study on 3-D Physical Modeling for the Inspection of Tunnel Lining Structure by using Ultrasonic Reflection Method (터널 지보구조 진단을 위한 초음파 반사법을 이용한 3차원 모형실험 연구)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.221-228
    • /
    • 2002
  • Thickness of concrete lining, voids at the back of lining or shotcrete are very important elements for inspecting the safety of tunnels. Therefore, the inspection of tunnel lining structure means to investigate the inner layer boundaries of the structure. For this purpose, seismic reflection survey is the most desirable method if it works in good conditions. However, the conventional seismic reflection method can not be properly used for investigating thin layers in the lining structure. In other words, to detect the inner boundaries, it is desirable for the wavelength of source to be less than the thickness of each layer and for the receiver to be capable of detecting high frequency(ultrasonic) signals. To this end, new appropriate source and receiver devices should be developed above all for the ultrasonic reflection survey. This paper deals primarily with the development of source and receiver devices which are essential parts of field measuring system. Interests are above all centered in both the radiation pattern, energy, frequency content of the source and the directional sensitivity of the receiver. With these newly devised ones, ultrasonic physical modeling has been performed on 3-D physical model composed of bakelite, water-proof and concrete, The measured seismograms showed a clear separation of wave arrivals reflected from each layer boundary. Furthermore, it is noteworthy that reflection events from the bottom of concrete below water-proof could be also observed. This result demonstrates the usefulness of the both devices that can be applied to benefit the ultrasonic reflection survey. Future research is being focus on dealing with at first an optimal configuration of source and receiver devices well coupled to tunnel wall, and further an efficient data control system of practical use.

  • PDF

Study on the Structure and Photoelectrochemical Properties of Anodized TiO2 Nanotube Films (양극산화법으로 제작한 TiO2 나노튜브 박막의 구조 및 광전기화학 특성 분석)

  • Lee, A Reum;Park, Sanghyun;Kim, Jae-Yup
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.264-268
    • /
    • 2018
  • Vertically-aligned $TiO_2$ nanotube electrodes have attracted considerable attention for applications in solar cells, catalysts, and sensors, because of their ideal structure for electron transport and electrolyte diffusion. Here, we prepare vertically-aligned $TiO_2$ nanotube electrodes using a two-step anodization process. The prepared $TiO_2$ nanotube electrodes exhibit uniform pore structures with an inner diameter of ~80-90 nm and wall thickness of ~20-25 nm. In addition, they exhibit an anatase crystal phase after a high-temperature annealing. The annealed $TiO_2$ nanotube electrodes are applied in dye-sensitized solar cells (DSSCs) as photoanodes. The fabricated DSSC exhibits conversion efficiencies of 3.46 and 2.15% with liquid- and gel-type electrolytes, respectively.

Effect of Surface Roughness on Turbulent Concentric Annular Flows (난류 이중동심관 유동에 미치는 표면거칠기 효과)

  • 김경천;안수환;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1749-1757
    • /
    • 1995
  • The structure of turbulence of fully developed flow through three concentric annuli with both rough inner and outer walls was investigated experimentally for Reynolds number range Re=15000-93000. Turbulence intensities were measured in three (u, v, w) directions, and turbulence shear stresses in annuli of radius ratios .alpha.= 0.26, 0.4 and 0.56, respectively. The result showed that the structure of turbulence for these asymmetric flows was not the same as that for the annulus with smooth walls. The velocity fluctuations of all three components (u, v, and w-directions) showed little discernible variation with Reynolds numbers, but became apparent with the influence of radius ratio (.alpha.) The experimental results for an annulus with the roughened outer wall and a smooth annulus were shown in the figures as a reference. The eddy diffusivities and friction factors were also presented and discussed.

Evaluation of Endcap Welding Test for a Nuclear Fuel Rod having External and Internal Tube Structure (내외부 이중튜브구조를 갖는 핵연료봉의 봉단마개 용접시험 평가)

  • Kim, Soo-Sung;Kim, Jong-Hun;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1377-1380
    • /
    • 2008
  • An irradiation test of a nuclear fuel rod having external and internal tube structure was planned for a performance. To establish fabrication process satisfying the requirements of irradiation test, micro-TIG welding system for fuel rods was developed, and preliminary welding experiments for optimizing process conditions of fuel rod was performed. Fuel rods with 15.9mm diameter and 0.57mm wall thickness of cladding tubes and end caps have been used and optimum conditions of endcap welding have been selected. In this experiment, the qualification test was performed by tensile tests, helium leak inspections, and metallography examinations to qualify the endcap welding procedure. The soundness of the welds quality of a dual cooled fuel rods has been confirmed by mechanical tests and microstructural examinations.

  • PDF

Fabrication of Bending Actuator using Zigzag-type Shape Memory Alloy Spring (지그재그 형태의 형상기억합금 스프링을 이용한 굽힘 액추에이터의 제작)

  • Im, An-Su;Lee, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.269-274
    • /
    • 1999
  • A bending actuator using zigzag type shape memory alloy springs has been fabricated and characterized. The fabricated millimeter-sized actuator has outer diameter of 3.0mm and inner diameter of 2.0mm. The zigzag type spring is more suitable for thin wall type actuator because the zigzag type spring has a planar structure comparing with the coil type spring which has a three-dimensional structure. The measured characteristics of the fabricated bending actuator show the possibility of practical application to micro active bending catheters.

  • PDF

A Study on the Analysis of the Rebounding Force using the 1-DOF Model (1자유도 모델을 사용한 발사반발력 해석에 관한 연구)

  • Yi, Jong-Ju;Kim, Chwa-Il;Kim, Jae-Ho;Ham, Il-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • This paper describes about the analysis of firing rebounding force exerted on the launching system supporting structure. The measured high pressure data at the launching tube is used as external force. The maximum firing rebounding force was occurred when the snubber of inner structure contacts the surface of wall in launching tube.