• Title/Summary/Keyword: Inner structure wall

Search Result 122, Processing Time 0.023 seconds

Ultrastructure of Wood Cell Wall Tracheids - The Structure of Spiral Thickenings in Compression Wood - (목재세포벽(木材細胞壁)의 미세구조(微細構造)에 관한 연구(硏究) - Compression wood의 나선비후(螺旋肥厚)의 구조(構造) -)

  • Lee, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 1981
  • The structure of spiral thickenings, particulary the appearance, arrangement and orientation of thickenings in compression wood of Torreya nucifera, were studied in detail by light and polarizing microscope, scanning and transmission electron microscope. The results obtained are as follows: (1) Using the inclined sections at an angle of 45 degrees to the fiber axis, it seems that we can not only observe the more accurate transverse view of the thickenings but also investigate the formation of their thickenings. (2) Generally 2-4 pieces of thickenings are projected to the cell lumen as nipple-like appearance in transverse section and are as frequent, well developed, forming pair and have the rope-like appearance in radial surface. (3) The secondary wall of early wood is composed of 3 layers (S1, S2, S3) and orientation of thickening appears S helix but that of late wood is of 2 layers (S1, S2) and that orientation shows Z helix. Above two regions are demaracted at several tracheid cells from the growth ring boundary. (4) Orientation of thickening seems to be a element showing the characteristics of compression wood in Torreya nucifera. (5) It believes that the thickenings of compression wood are integral part of the S3 in early wood tracheids and of the S2 in late wood and have the same orientations as the inner-most microfibrils in these layers. (6) Thickening and cavities seem to be not formed together in a secondary cell wall of same tracheids.

  • PDF

Frequency-Domain Analysis for Motion of Floating Structures with Perforated Wall (유공벽이 설치된 부유체 동요 평가를 위한 주파수 영역 해석)

  • Jeongsoo Kim;Youn Ju Jeong;Young-Taek Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • As increasing demands for a floating structure expanded from offshore industry facilities to living facilities, it has emerged that necessity of techniques to reduce motions of a floating structure. This study present a floating structure with porosity on the outer surface of the floater. Under each regular and irregular wave, responses of the floater was investigated in frequency domain. The proposed structure is composed of inner and outer floaters, which are connected to each other and the outer wall is perforated, and the heave and the pitch of floaters with different perforation rates (0~30%) were compared with at both the center and the edge. The results showed that pitch responses can be decreased by increasing of perforation rate of the floater. Comparing with responses of the non-perforated floater, those of the proposed floating structure were reduced to above 10% and 2%, respectively for regular and irregular wave conditions.

MORPHOLOGICAL STUDY BY SCANNING ELECTRON MICROSCOPY OF RUMEN DEGRADATION OF WHEAT STRAW TREATED WITH AMMONIA AND SULPHUR DIOXIDE

  • Song, Y.H.;Shimojo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.265-270
    • /
    • 1993
  • Ammonia and/or sulphur dioxide treated and untreated wheat leaf sheaths were compared for cell wall digestion by incubation with rumen liquor for 24 and 48 hours. Scanning electron microscope (SEM) was used to study the relative rate and extent of cell wall digestion. Treated wheat straw leaf sheaths were distorted, with more distortion observed in ammonia and sulphur dioxide combined treatment than any other treatment. Rumen liquor digestion for 24 hours of untreated leaf sheath showed disrupted phloem, partially ruptured parenchyma and vascular tissues and further partially distorted inner bundle sheaths and vascular bundle after 48 hours incubation. Sulphurated leaf sheaths showed extensive degraded parenchyma and sclerenchyma material in 24 hours incubation, however, all tissues were irregulary shaped in 48 hours incubation. In ammoniation, epidermal cell walls and small vascular bundles began to disintegrate by 24 hours incubation, extensively changed structure and degraded epidermal tissue by 48 hours incubation. Combination treatment of leaf sheaths degraded all cell walls of parenchyma, phloem and vascular bundle by 24 hours incubation, however, structures only of inner bundles sheath with extended land, sclerenchyma and cutinized epidermal cell walls remained.

An Experimental Study on Improvement in Waterproofing Performance of Ground Structures applied to Synthetic Polymeric Sheet of monolithic adhesion Type (일체부착형 합성고분자 시트를 이용한 지하구조물 방수 성능향상에 관한 실험적 연구)

  • Kang, Hyo-Jin;Song, Jei-Young;Kwon, Shi-Won;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.125-129
    • /
    • 2005
  • The waterproofing in slab and wall of underground structure, have a couple of construction methods which are inside waterproofing methods for inner surface, and outside waterproofing methods for out wall and slab surface waterproofing. In resent years, however, it has been adapted the inside waterproofing construction method, as increasing of construction expenses cost and low workability and technology, nevertheless, outside waterproofing has set a most high value construction method. In inside waterproofing construction method, it is difficult to repair and assure durability and safety for concrete which has direct water-press. So, It is necessary for adopt the outside waterproofing method. For that reasons, this study based on the application for outside waterproofing method on the under ground structure, to more increase durability, to introduce mono adhesive sheet waterproofing materials. as considering chemical, physical properties.

A Study on the Optimal Facility Layout Design Using an Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 최적 공간 배치 설계에 관한 연구)

  • 한성남;이규열;노명일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.174-183
    • /
    • 2001
  • This study proposes an improved genetic algorithm (GA) to derive solutions for facility layout problems having inner walls and passages. The proposed algorithm models the layout of facilities on a flour-segmented chromosome. Improved solutions are produced by employing genetic operations known as selection, crossover, inversion, mutation, and refinement of these genes for successive generations. All relationships between the facilities and passages are represented as an adjacency graph. The shortest path and distance between two facilities are calculated using Dijkstra's algorithm of graph theory. Comparative testing shows that the proposed algorithm performs better than other existing algorithm for the optimal facility layout design. Finally, the proposed algorithm is applied to ship compartment layout problems with the computational results compared to an actual ship compartment layout.

  • PDF

Charcoal Properties and Temperature Change of a Kiln's Inner and Outer Walls in Carbonization Process Using an Improved Kiln (개량형탄화로를 이용한 제탄과정 중 탄화로 내·외벽 온도변화 및 목탄 특성)

  • Kwon, Gu-Joong;Kwon, Sung-Min;Jang, Jae-Hyuk;Hwang, Won-Joung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.230-237
    • /
    • 2011
  • The study was performed to investigate the characteristics of charcoal and temperature change of a kiln's inner and outer walls in carbonization process using improved kiln. In this kiln system, carbonization process was completed in eight days. In the kiln, the ignition temperature was kept about $720^{\circ}C$. And then the temperature were increased gradually prior to be refined. Finally, the temperature in refining process was reached to maximum point, $1,000^{\circ}C$. In the chimney, the temperature was increased gradually from $90^{\circ}C$ at ignition to $750^{\circ}C$ at refining. The temperature change of the kiln wall resembles a temperature change progress curve during a carbonization process. The highest temperature of the kiln wall that appeared by a carbonization process was around $500^{\circ}C$. As a result of having measured an inner wall and the outer wall of the kiln using an infrared thermography camera, it was judged with there being considerable latent heat on kiln wall and ceiling. Fixed carbon contented of charcoal was 85.9~89.9%. Refining degree of charcoal, hardness, calorific value and pH were l, 12, 7,047~7,456 kcal/kg, 9.0~9.9, respectively. The yield of wood charcoal was 13.8%, and compared to conventional kiln's yield increased 1.5%.

Restoration of Iksan Imperial Capital City Structure and Construction Model in Late Baekje from the Point of Ancient Capital City Planning (백제 후기 익산도성 조영계획모델에 대한 도성계획사적 해석)

  • Lee, Kyung-Chan
    • Journal of architectural history
    • /
    • v.24 no.3
    • /
    • pp.31-41
    • /
    • 2015
  • This study aims to draw out planning principles and structure of Iksan imperial capital city in late Baekje, especially in view of the relationship among imperial capital city planning area, skeletal axis and the location of royal castle. With site survey and analysis of historical records, old maps, topographical maps, archeological excavation data, land registration map of 1915, some significant inferences were drawn out. Firstly from the point of topological conditions, the contiguous line of a stratum from Mireuk mountain(彌勒山) to Wangkung-ri castle(王宮里遺蹟) and two waterways made a topological axis of Iksan Imperial capital city. Secondly district of Iksan imperial capital city can be deduced to the inner area north to Kummado soil wall(金馬都土城), south to the confluence of Iksan river(益山川) and Busang river(扶桑川), west to Okum mountain fortress(五金山城) and Galjeon river(葛田川), east to line near to eastern wall of Jesuksa temple(帝釋寺). Iksan ssang-reung(益山雙陵) was located outside western boundary line of capital city. Thirdly axis from Wangkung-ri castle to northern Kummado soil wall made a skeletal axis of city structure. It got through northern lowland along Buk river(北川) between Yonghwa(龍華山) and Mireuk mountain. Fourthly the location of royal palace can be deduced to the north part of the city around Kumma town area along the planning principle of northern royal palace.

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load by 3D Numerical Analysis (3차원 수치해석에 의한 표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Seo, Seunghwan;Jin, Hyunsik;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2019
  • The lateral load from traffic depends on standard truck's axle loads and locations, loading distance from the inner wall. The method of limit state design has been adopted and used for design of roads in the Republic of Korea since 2015. The concept of equivalent height of soil accounting for traffic loading is often used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the standard truck of the nation, based on the findings from analytical solutions using 3D finite element method. Compare to US, the standard truck loading has a structure where the axle load is concentrated so that the equivalent load height is estimated to be slightly larger than AASHTO for lower retaining wall height. It would be reasonable to present the equivalent load height in Korea more conservatively than AASHTO in terms of securing long term stability of the retaining wall structure.

Buckling Analysis of Corrugated Board using Finite Element Method (유한요소법에 의한 Corrugated Board의 휨 발란스 해석)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • The top-to-bottom compression strength of corrugated board box is the most important mode of loading during it's no, and it depends largely on the edgewise compression strength of the corrugated board in the cross-machine direction and to a considerable extent on the flexural stiffness in both principal directions (CD; cross-machine direction, MD; machine direction) of the corrugated board. Corrugated board is a sandwich structure with an orthotropic property. The purpose of this study was to elucidate the principal design parameters for board combination of corrugated board from the viewpoint of bending strength through the finite element analysis [FEA] fur the various corrugated board. In general, the flexural stiffness [FS] in the MD was 2-3 times larger than that in the CD, and the effect of liner for the FS of corrugated board was much bigger than that of corrugating medium. The flexural stiffness index [FSI] was high when the stiffness of liner was in the order of inner, outer, and middle liner in double-wall corrugated board [DW], and the effect of the stiffness arrangement or itself reinforcement of corrugating medium on the FSI was not high. In single-wall corrugated board [SW] with DW. the variation of FSI with itself stiffness reinforcement of liner was much bigger than that with stiffness arrangement of liner. The highest FSI was at the ratio of about 2:1:2 for basis weight distribution of outer, middle, and inner liner if the stiffness of liner and total basis weight of corrugated board were equal in DW Secondarily. basis weight was in the order of inner, outer, and middle liner. However, the variation of FSI with basis weight distribution between liner and corrugating medium was much bigger than that with itself basis weight distribution ratio of liner and corrugating medium respectively in both DW and SW. md the FSI was high as more total basis weight was divided into liner. These phenomena fur board combination of corrugated board based on the FEA were well verified by experimental investigation.

Achene wall anatomy and surface sculpturing of Launaea Cass. (Compositae: Cichorieae) with notes on their systematic significance

  • Zareh, Momen Mustafa;Faried, Ahmed Mohamed;Mohamed, Mona Hassan
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.187-198
    • /
    • 2016
  • This is the first study to deal in-depth with the achene ultra-structure of the genus Launaea Cass. in Egypt. It focuses on 12 taxa belonging to 10 species of this genus. The achene wall anatomy and surface sculpturing of those taxa were studied using scanning electron microscopy (SEM). Important aspects of the investigated taxa based on the achene characters as well as SEM micrographs of the achene surface and anatomical sections are given. Main and secondary costa of the inner achenes are used for easy differentiation between L. intybacea and L. massauensis.