• 제목/요약/키워드: Inner Rotor

검색결과 138건 처리시간 0.026초

Analytical Calculation of Air Gap Magnetic Field Distribution in Magnetic Geared Motors

  • Shi, Hyoseok;Niguchi, Noboru;Hirata, Katsuhiro
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.794-802
    • /
    • 2019
  • Magnetic geared motors are driven using the same operating principle as conventional synchronous motors in which a magnetic gear is embedded. The magnetic geared motor is structurally similar to a magnetic gear. However, by applying currents to the stator coil, the high-speed rotor is rotated by a magnetic field and the low-speed rotor is rotated according to the gear ratio. In this paper, the operational principle of a magnetic geared motor and the magnetic flux density in its inner and outer air gaps are described. Then the magnetic flux density in the two air gaps is used to express a method for calculating the electrical and mechanical output. Results obtained with the analytical calculation method are compared with those of the finite element analysis. Finally, a prototype is used to verify the results of the analytical calculation and FEA.

과급기 축계의 안정성 해석 (Stability Analysis of Turbocharger Rotor-Bearing System)

  • 석호일;송진대;김용한;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.1038-1043
    • /
    • 2002
  • The floating ring journal bearing is attraction for high-speed turbo machinery applications, including turbochargers and aircraft accessory equipment, because it is not only simple and easy to make and to replace in the field but also it seems to have adequate high speed stability characteristics. Therefore, an analysis method of dynamic properties of floating ring journal bearing is presented. The static equilibrium locus of inner film and outer film are calculated by using the impedance description. The equivalent stiffness and damping coefficients of floating ring journal bearing are composed by using the equilibrium of torque between inner film and outer film. Then, a stability analysis of turbocharger shaft system supported with floating ring journal bearing has been performed.

  • PDF

Grid-friendly Characteristics Analysis and Implementation of a Single-phase Voltage-controlled Inverter

  • Zhang, Shuaitao;Zhao, Jinbin;Chen, Yang;He, Chaojie
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1278-1287
    • /
    • 2017
  • Inverters are widely used in distributed power generation and other applications. However, their lack of inertia and variable impedance may cause system instability and power transfer inaccuracy. This paper proposes a control scheme for a single phase voltage-controlled inverter with some grid-friendly characteristics. The proposed control algorithm enables the inverter to function as a voltage source with an inner output impedance in both the islanded and grid-connected modes. Virtual inertia and rotor equations are embedded in the PLL part. Thus, the frequency stability can remain. The inner output impedance can be adjusted freely, which helps to accurately decouple and transmit the output active and reactive power. The proposed inverter operates like a traditional synchronous generator. Simulations and experiments are designed and carried out to verify the proposed control strategy.

과급기 축계의 진동 해석 (Vibration Analysis of Turbocharger Rotor-Bearing System)

  • Suk, Ho-Il;Yang, Bo-Suk;Song, Jin-Dea
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.400.2-400
    • /
    • 2002
  • Recently rotating machines have became high speed and high Power and light weight. Bearings are one of the main components which influence power loss and stability of rotating machines. Appropriate bearing should be selected with considering characteristics of rotating machine. Floating ring journal bearing(FIB) consists of an inner film and outer film, and possess high damping and stability. FJB has been for adopted into turbocharger for the high stability at high operating speed. (omitted)

  • PDF

내부 원형 그루브를 갖는 저속 드라이 가스 시일의 윤활 성능해석 및 실험 (Lubrication Performance Analysis and Experiment of a Low-Speed Dry Gas Seal having an Inner Circular Groove)

  • 이안성;김준호
    • Tribology and Lubricants
    • /
    • 제21권2호
    • /
    • pp.53-62
    • /
    • 2005
  • In this study a general Galerkin FE lubrication analysis method was utilized to analyze the complex lubrication performance of a spiral groove seal having an additional inner circular groove, which was designed for a chemical process mixer operating at a low speed of the maximum 500 rpm. Equilibrium seal clearance analyses under varying outer pressure revealed that the seal maintains a certain levitation seal clearance under the outer pressure of more than about 1.5 bar, regardless of a rotating speed. Also, under the normal outer pressure of 11 bar, the axial stiffness of the seal was predicted to have a high value of more than 7.0 e + 07 N/m, regardless of a rotating speed and thereby, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting. A seal levitation test rig was designed and constructed. Experimental results at 500 rpm agreed well with analytical predictions and the applied lubrication analysis method was verified.

자동차용 유압베인펌프의 고속에서 베인과 캠링간의 이간현상 (The Separation of the Vane and the Camring at high speed of an Oil Hydraulic Vane Pump for Automobile)

  • 조인성;백일현;정재연
    • Tribology and Lubricants
    • /
    • 제26권2호
    • /
    • pp.136-141
    • /
    • 2010
  • In an oil hydraulic vane pump for an automobile, it is very important that the vane doesn't separate from the camring inner race during the operation of the vane pump. The vane generally has not only the oil hydraulic force acting on the bottom face to contact to camring inner race but there is also an inertial force and viscous force. Because the oil hydraulic force is much larger than the other forces, the contact state between the vane tip and the camring inner race is sufficient. However, the contact state between the vane tip and the camring inner race is only affected by the inertial and viscous forces during the delivery of the vane pump, because the oil hydraulic force acting on the vane is in equilibrium. If the inertial force is larger than the viscous force, which happens when the vane is separated from the camring inner race, the delivery of the vane pump can become unstable or the volume efficiency can become decrease rapidly. Therefore, in this paper, the state of the contact between the vane and the camring is considered. The results show that the rotating speed of the shaft, the operating temperature of the oil, the clearance between the vane and the rotor, and the mass of the vane exert a great influence on the state of the contact between the vane and the camring.

내부 펌프의 새로운 로버 설계에 관한 연구 (A Study on the Design of a New Rotor in Internal Pumps)

  • 장영준;김재훈;한승무;김철
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.100-107
    • /
    • 2007
  • A internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobes with circular shape, while the inner rotor profile is determined as conjugate to the other. The topic of this paper is the design of a new rotor, which is based on specific performance as different types depending on the shape of the lobe of the outer rotor. First, the design of internal lobe pumps with circular, elliptical, and their combined lobe profiles is considered. The latter is a new type of lobe profile with special shape whose curvature follows a definite function. Then we introduce the performance indexes used for the comparison. Some of these indexes, such as flow rate and flow rate irregularity, are commonly used for the comparison, while specific slipping is particularly suitable in this case. It is possible to notice that the circular and elliptical type is comparable to the circular one or the elliptical one in terms of flow rate irregularity, but has improved performance in terms of specific slipping. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field.

제로터 펌프의 설계 및 배제용적 특성 실험 (Design of a Gerotor Pump and Experimental Investigation of Its Volumetric Displacement Characteristics)

  • 김대명;김성동;구지석;오성진;함영복
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1383-1389
    • /
    • 2011
  • 제로터 펌프는 용적식 펌프로서 유압 및 수압장치에 적합하며, 다양한 분야에서 널리 사용되어지고 있다. 이러한 이유로 많은 연구자들에 의해 연구되어지고 있다. 본 연구에서는 선행연구자들에 의해 연구되어진 제로터의 이론적 설계 방법을 토대로 설계식의 타당성을 검증해보고 곡선족의 포락선으로 부터 로터 프로파일을 설계하는 방법을 설명하고 CAD기법을 이용한 계산과 실험을 통하여 설계 프로파일과 배제용적 산출 방법의 타당성을 비교 검증 하였다. 제로터 펌프의 특성실험을 통하여 성능을 확인하고 제로터 펌프의 디자인과 배제용적 산출 방법을 설명하였다.

자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 동정 (Identification of Dynamic property of Squeeze Film Damper Using Magnetic Fluid)

  • 안영공;하종용;김용한;안경관;양보석;삼하신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.227-230
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

  • PDF

PMSM 전동기 모터의 복합 열전달 해석을 위한 CFD 프로그램 개발 (DEVELOPMENT OF CFD PROGRAM FOR THE CONJUGATE HEAT TRANSFER ANALYSIS OF PMSM ELECTRIC MOTOR)

  • 이정희;;허남건;김주한;김영균
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.488-493
    • /
    • 2011
  • The object of this study is to develope the program for analyzing the fluid flow and heat transfer of PMSM electric motor. The program will be mainly used for inexperienced users of CFD analysis. So it has to be performed using the geometry data and the heat source of each part only. Interface program for converting the given data to the instruction of pre-processor is developed. The conjugate heat transfer between a flow passage of the motor and inner parts consisting of rotor and stator is regarded. In order to reduce the computational time and memory storage, cyclic boundary condition is applied. For the numerical simulation, MRF(Multi-Reference Frame) method is used to consider rotating operation of the rotor and heat source is applied to the copper, wire, and magnetic parts in the motor. On the screen of computer, the users can show the velocity distributions and the contours such as pressure, turbulent kinetic energy, turbulent dissipation rate and temperature.

  • PDF