• Title/Summary/Keyword: Inner Movement

Search Result 224, Processing Time 0.027 seconds

Analysis of Line of Sight Stabilization Performance based on Direct vs. Indirect of a 2-axis Gimbaled Servo System for Millimeter Wave Seeker (밀리미터파 탐색기 2축 직구동 김발 서보 시스템의 직접 및 간접 시선안정화 성능 분석)

  • Shin, Seungchul;Lee, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1555-1561
    • /
    • 2018
  • Tracking and detecting targets by the millimeter wave seeker is affected by movement of platform. Stabilization equipments use an inertial sensor to compensate for disturbance of stabilizing gimbal or platform. In the direct line of sight stabilization system, an inertial sensor is mounted on inner gimbal to compensate the disturbance directly, so the performance is excellent and the implementation method is simple. However gimbal design requires somewhat larger volume. Since an inertial sensor is mounted on gimbal base in the indirect line of sight stabilization system, additional space of gimbal is not required for the gimbal design. However, this method does not directly compensate for the disturbance of the line of sight stabilization axis, which can degrade performance. In order to perform the tracking performance, two methods are analyzed for line of sight stabilization performance based on direct and indirect of a 2-axis gimbaled servo system for millimeter wave seeker in this study. The simulation and experimental results validate the performance comparison of two methods.

Stereo Vision Based 3-D Motion Tracking for Human Animation

  • Han, Seung-Il;Kang, Rae-Won;Lee, Sang-Jun;Ju, Woo-Suk;Lee, Joan-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.716-725
    • /
    • 2007
  • In this paper we describe a motion tracking algorithm for 3D human animation using stereo vision system. This allows us to extract the motion data of the end effectors of human body by following the movement through segmentation process in HIS or RGB color model, and then blob analysis is used to detect robust shape. When two hands or two foots are crossed at any position and become disjointed, an adaptive algorithm is presented to recognize whether it is left or right one. And the real motion is the 3-D coordinate motion. A mono image data is a data of 2D coordinate. This data doesn't acquire distance from a camera. By stereo vision like human vision, we can acquire a data of 3D motion such as left, right motion from bottom and distance of objects from camera. This requests a depth value including x axis and y axis coordinate in mono image for transforming 3D coordinate. This depth value(z axis) is calculated by disparity of stereo vision by using only end-effectors of images. The position of the inner joints is calculated and 3D character can be visualized using inverse kinematics.

  • PDF

Device for Catheter Placement of External Ventricular Drain

  • Ann, Jae-Min;Bae, Hack-Gun;Oh, Jae-Sang;Yoon, Seok-Mann
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.322-324
    • /
    • 2016
  • To introduce a new device for catheter placement of an external ventricular drain (EVD) of cerebrospinal fluid (CSF). This device was composed of three portions, T-shaped main body, rectangular pillar having a central hole to insert a catheter and an arm pointing the tragus. The main body has a role to direct a ventricular catheter toward the right or left inner canthus and has a shallow longitudinal opening to connect the rectangular pillar. The arm pointing the tragus is controlled by back and forth movement and turn of the pillar attached to the main body. Between April 2012 and December 2014, 57 emergency EVDs were performed in 52 patients using this device in the operating room. Catheter tip located in the frontal horn in 52 (91.2%), 3rd ventricle in 2 (3.5%) and in the wall of the frontal horn of the lateral ventricle in 3 EVDs (5.2%). Small hemorrhage along to catheter tract occurred in 1 EVD. CSF was well drained through the all EVD catheters. The accuracy of the catheter position and direction using this device were 91% and 100%, respectively. This device for EVD guides to provide an accurate position of catheter tip safely and easily.

Finite Element Analysis and Parameter Optimization for the Press Hemming of Automotive Closures (차량외판 프레스 헤밍공정의 유한요소해석 및 공정변수 최적화)

  • Kim, J.H.;Kwak, J.H.;Kim, S.H.;Ju, Y.H.;Shin, H.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • In the current study, finite element analysis was conducted for the press hemming of automotive panels in order to predict various hemming defects such as roll-in and turn down. The analysis used the exact punch movement based on the cam location and considered the sealer between the inner and outer panels with an artificial contact thickness. The analysis results quantify the hemming defects especially at the flange edge in the matching region of the head lamp. A design of experiments along with the parameter study was used to obtain the optimum process parameters for minimizing hemming defects. The optimization process selects the intake angle, bending angle of the hemming punch, and the flange height of the outer panel. The optimum design process determines an appropriate tool angle and flange height to reduce the roll-in and turn-down as compared to the initial design.

Monitoring of Rotational Movements of Two Piston Rings in a Cylinder Using Radioisotopes

  • Jung, Sunghee;Jin, Joonha
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.423-431
    • /
    • 1999
  • A radiotracer technique has been developed to monitor the rotational movement of two piston rings in one cylinder during engine operation. The rings were labeled with two different kinds of radioisotopes, i.e. $^{60}$ Co and $^{192}$ Ir, for identification of the top ring from the second ring. The radiotracers were implanted in a small hole bored on the inner side of each piston ring. The rings were installed in a single cylinder hydrogen engine and three Nal scintillation detectors were mounted around the engine block to measure the gamma radiation. The angle of ring-gap orientation was determined from the radiation counts measured with the three detectors during engine operation. Two windows (upper window for $^{60}$ Co and lower window for $^{192}$ Ir) were set on each ratemeter to count radiation from the two isotopes separately. Procedure to convert the radiation counts to the position of the ring gap was established. With the software programmed with MS-Visualbasic, radiation counts were compared with the reference responses that were measured at angular intervals of 10$^{\circ}$for each piston ring in advance of the experiment. The result was used for the evaluation of the relationship between the orientation of ring-gaps and oil consumption. It was found that an increase in the oil consumption rate of a specific operation condition was closely related to the relative phase angle of the two piston rings.

  • PDF

Crystal growth from melt in combined heater-magnet modules

  • Rudolph, P.;Czupalla, M.;Dropka, N.;Frank-Rotsch, Ch.;KieBling, F.M.;Klein, O.;Lux, B.;Miller, W.;Rehse, U.;Root, O.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.215-222
    • /
    • 2009
  • Many concepts of external magnetic field applications in crystal growth processes have been developed to control melt convection, impurity content and growing interface shape. Especially, travelling magnetic fields (TMF) are of certain advantages. However, strong shielding effects appear when the TMF coils are placed outside the growth vessel. To achieve a solution of industrial relevance within the framework of the $KRISTMAG^{(R)}$ project inner heater-magnet modules(HMM) for simultaneous generation of temperature and magnetic field have been developed. At the same time, as the temperature is controlled as usual, e.g. by DC, the characteristics of the magnetic field can be adjusted via frequency, phase shift of the alternating current (AC) and by changing the amplitude via the AC/DC ratio. Global modelling and dummy measurements were used to optimize and validate the HMM configuration and process parameters. GaAs and Ge single crystals with improved parameters were grown in HMM-equipped industrial liquid encapsulated Czochralski (LEC) puller and commercial vertical gradient freeze (VGF) furnace, respectively. The vapour pressure controlled Czochralski (VCz) variant without boric oxide encapsulation was used to study the movement of floating particles by the TMF-driven vortices.

Inflow Characteristics of Debris Flow and Risk Assessment for Different Shapes of Defensive Structure (방어구조물 형상에 따른 토석류의 유입특성과 위험도 평가)

  • Oh, Seung Myeong;Song, Chang Geun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.93-98
    • /
    • 2016
  • This study analyzed the inflow characteristics of debris flow according to shape of defensive structure and computed risk index. In order to simulate debris flow, two shapes of defensive structure were considered. Initial mass distribution was set with a rectangular shape and defensive structures were set semi-circular shape and rectangular shape, respectively. It was found that a defensive structure with semicircular shape was more vulnerable to debris impact compared with rectangular shape because the flow mass became concentrated in quadrant part of the inner circle. If the velocity of the debris flow was less than 1 m/s, the risk assessment by FII (Flood Intensity Index) was much appropriate. However, when the movement of debris runout was faster than 1 m/s, the risk index of FHR (Flood Hazard Rating) provided improved classification due to its subdivided hazardous range.

Characteristics of Seismic Activity in the 20th century and Analysis on the Damage and Intensity of Yeongwol Earthquake(December, 13, 1996) (20C 한반도 지진활동 특성과 영월지진(1996년12월13일)의 피해 및 진도 분석)

  • 경재복
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.77-87
    • /
    • 1997
  • The earthquake data(M$\geq$4.0) for post-1900 in the Korean Peninsula show temporal variation with active and quiet periods. The pattern is quite similar to northeastern China and Inner Zone of Southwest Japan. Yeongweol earthquake occurred in the seismic gap region of the Korean Peninsula. This is the first medium-size earthquake in inland region of the southern peninsula since 1978. The intensity based on the felt area estimation of about 400 places shows MMI III-Ⅷ in inland region. IIon Cheju Island and Ion Ulreung Island. The isoseismal of MMI Ⅶ shows an elongated circle in the direction of NE-SW and covers some parts of Jungdong-myon, Yeongweol-kun, Sindong-eup and Nam-myun, Jeongseon-kun. There occurred quite strong shaking, numerous cracks on the walls of buildings, falling and movement of slate and tiles on the roofs, falling of tiles from the wall and falling of materials from desks, rook falling from mountain and collapse of gravel lauers on the river side. The least square fitting of the intensity data of the Yeongweol earthquake by a popular intensity attenuation relation yields the following : I=Io+1.82249 - 0.65295*InR - 0.00707*R

  • PDF

Evaluation of Blast Wave and Pipe Whip Effects According to High Energy Line Break Locations (고에너지배관 파단위치에 따른 배관휩과 충격파의 영향 평가)

  • Kim, Seung Hyun;Chang, Yoon-Suk;Choi, Choengryul;Kim, Won Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.54-60
    • /
    • 2017
  • When a sudden rupture occurs in high energy lines, ejection of inner fluid with high temperature and pressure causes blast wave as well as thrust forces on the ruptured pipe itself. The present study is to examine pipe whip behaviors and blast wave phenomena under postulated pipe break conditions. In this context, typical numerical models were generated by taking a MSL (Main Steam Line) piping, a steam generator and containment building. Subsequently, numerical analyses were carried out by changing break locations; one is pipe whip analyses to assess displacements and stresses of the broken pipe due to the thrust force. The other is blast wave analyses to evaluate the broken pipe due to the blast wave by considering the pipe whip. As a result, the stress value of the steam generator increased by about 7~21% and von Mises stress of steam generator outlet nozzle exceeded the yield strength of the material. In the displacement results, rapid movement of pipe occurred at 0.1 sec due to the blast wave, and the maximum displacement increased by about 2~9%.

Development of Atomization Spraying System for Solvent-free Paints(II) - Structural Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(II) - 유압 엑츄에이터의 구조해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Solvent-free paint is sprayed from higher-pressure conditions, because the viscosity is large. The hydraulic actuator which can be operated under higher-pressure condition is required to spray solvent-free paints in painting process for the environmental protection. The purpose of this paper is to develop the hydraulic actuator under higher-pressure conditions for solvent-free paint spraying system. The hydraulic actuator consists of inner spool, outer spool and ball. The analysis of a structural stability was conducted by using ANSYS V11 under the design condition of upward and downward movement of spool. As a result, the maximum von-Mises stress applied on spool under 4mm displacement showed a value of 106MPa which was greater than the allowable stress of the spool with a value of 250MPa and a value of safety factor 3. This result suggested that the spool system be unstable under the design condition so that it was necessary for the spool system to be reinforced to secure the structural stability.