• Title/Summary/Keyword: Inner Mongolia Cashmere Goats

Search Result 11, Processing Time 0.022 seconds

RAPD Variation and Genetic Distances among Tibetan, Inner Mongolia and Liaoning Cashmere Goats

  • Chen, Shilin;Li, Menghua;Li, Yongjun;Zhao, Shuhong;Yu, Chuanzhou;Yu, Mei;Fan, Bin;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1520-1522
    • /
    • 2001
  • Relationship among Tibetan cashmere goats, Inner Mongolia cashmere goats and Liaoning cashmere goats was studied using the technique of random amplified polymorphic DNA (RAPD). One primer and four primer combinations were screened. With the five primers and primer combinations, DNA fragments were amplified from the three breeds. Each breed has 28 samples. According to their RAPD fingerprint maps, the Nei's (1972) standard genetic distance was: 0.0876 between Tibetan cashmere goats and Inner Mongolia cashmere goats, 0.1601 between Tibetan cashmere goats and Liaoning cashmere goats, 0.0803 between the Inner Mongolia cashmere goats and Liaoning cashmere goats. It coincides with their geographic location. The genetic heterogeneity of Tibetan cashmere goats, Inner Mongolia cashmere goats and Liaoning cashmere goats is 0.3266, 0.2622 and 0.2475 respectively. It is also consistent with their development history.

Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping

  • Tao Zhang;Zhiying Wang;Yaming Li;Bohan Zhou;Yifan Liu;Jinquan Li;Ruijun Wang;Qi Lv;Chun Li;Yanjun Zhang;Rui Su
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1168-1176
    • /
    • 2024
  • Objective: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future. Methods: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (AEBS), Erlangshan (ELS), and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations. Results: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw single nucleotide polymorphisms (SNPs) obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13× to 46.18×, with an average of 28.5×. In the AEBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations. Conclusion: The Inner Mongolia cashmere goat (AEBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future.

Effects of photoperiod on nutrient digestibility, hair follicle activity and cashmere quality in Inner Mongolia white cashmere goats

  • Zhang, Chong Zhi;Sun, Hai Zhou;Li, Sheng Li;Sang, Dan;Zhang, Chun Hua;Jin, Lu;Antonini, Marco;Zhao, Cun Fa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.541-547
    • /
    • 2019
  • Objective: This study investigated the effects of photoperiod on nutrient digestibility, hair follicle (HF) activity and cashmere quality in Inner Mongolia white cashmere goats. Methods: Twenty-four female (non-pregnant) Inner Mongolia white cashmere goats aged 1 to 1.5 years old with similar live weights (mean, $20.36{\pm}2.63kg$) were randomly allocated into two groups: a natural daily photoperiod group (NDPP group:10 to 16 h light, n = 12) and a short daily photoperiod group (SDPP group: 7 h light:17 h dark, n = 12). All the goats were housed in individual pens and fed the same diets from May 15 to October 15, 2015. The digestibility of crude protein (CP), dry matter (DM), and neutral detergent fiber (NDF) were measured in different months, along with secondary hair follicle (SHF) activity, concentration of melatonin (MEL), and cashmere quality. Results: Although there was no significant difference in the live weights of goats between the SDPP and NDPP groups (p>0.05), the CP digestibility of goats in the SDPP group was significantly increased compared to the NDPP group in July, September, and October (p<0.05). For the DM and NDF digestibility of goats, a significant increase (p<0.05) was found during in September in the SDPP group. Furthermore, compared to the NDPP group, the SHF activity in July, the MEL concentration in July, and the cashmere fiber length and fiber weight in October were significantly increased in the SDPP group (p<0.05). Conclusion: The cashmere production of Inner Mongolia white cashmere goats was increased without obvious deleterious effects on the cashmere fibers in the SDPP group (metabolizable energy, 8.34 MJ/kg; CP, 11.16%; short daily photoperiod, 7 h light:17 h dark).

Effect of the Polymorphisms of Keratin Associated Protein 8.2 Gene on Fibre Traits in Inner Mongolia Cashmere Goats

  • Liu, Haiying;Li, Ning;Jia, Cunling;Zhu, Xiaoping;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.821-826
    • /
    • 2007
  • The aim of the experiment was to detect polymorphisms in the keratin-associated protein 8.2 (KAP8.2) gene to determine associations between the genotype and fibre traits in Chinese Inner Mongolia cashmere goats. The fibre traits data investigated were cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length. Five hundred and forty-two animals were used to detect polymorphisms in the complete coding sequence of the hircine KAP8.2 gene by means of PCR-SSCP. The results identified six genotypes, AA, BB, DD, AB, AD and BD, coded for by three different alleles A, B and D. Two SNPs in the coding region were confirmed by sequencing, which were A214G and T218C respectively. The relationships between the genotypes and cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length were analyzed. There were significant differences (p<0.01) between the associations of the different genotypes with cashmere fibre diameter, cashmere weight and hair length. Cashmere length was the only trait that was not associated with the genotypes. The genotype AA (0.73) was found to be predominant in Inner Mongolia cashmere goats and the animals with this genotype had the thinnest cashmere fibre diameter compared with the other genotypes. These results suggested that polymorphisms in the hircine KAP8.2 gene may be a potential molecular marker for cashmere fibre diameter in cashmere goats.

Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat

  • Han, Wenjing;Li, Xiaoyan;Wang, Lele;Wang, Honghao;Yang, Kun;Wang, Zhixin;Wang, Ruijun;Su, Rui;Liu, Zhihong;Zhao, Yanhong;Zhang, Yanjun;Li, Jinquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.316-326
    • /
    • 2018
  • Objective: This study investigated the expression of genes in cashmere goats at different periods of their fetal development. Methods: Bioinformatics analysis was used to evaluate data obtained by transcriptome sequencing of fetus skin samples collected from Inner Mongolia cashmere goats on days 45, 55, and 65 of fetal age. Results: We found that FoxN1, FoxE1, and FoxI3 genes of the Fox gene family were probably involved in the growth and development of the follicle and the formation of hair, which is consistent with previous findings. Real-time quantitative polymerase chain reaction detecting system and Western blot analysis were employed to study the relative differentially expressed genes FoxN1, FoxE1, and FoxI3 in the body skin of cashmere goat fetuses and adult individuals. Conclusion: This study provided new fundamental information for further investigation of the genes related to follicle development and exploration of their roles in hair follicle initiation, growth, and development.

SNP Discovery from Transcriptome of Cashmere Goat Skin

  • Wang, Lele;Zhang, Yanjun;Zhao, Meng;Wang, Ruijun;Su, Rui;Li, Jinquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1235-1243
    • /
    • 2015
  • The goat Capra hircus is one of several economically important livestock in China. Advances in molecular genetics have led to the identification of several single nucleotide variation markers associated with genes affecting economic traits. Validation of single nucleotide variations in a whole-transcriptome sequencing is critical for understanding the information of molecular genetics. In this paper, we aim to develop a large amount of convinced single nucleotide polymorphisms (SNPs) for Cashmere goat through transcriptome sequencing. In this study, the transcriptomes of Cashmere goat skin at four stages were measured using RNA-sequencing and 90% to 92% unique-mapped-reads were obtained from total-mapped-reads. A total of 56,231 putative SNPs distributed among 10,057 genes were identified. The average minor allele frequency of total SNPs was 18%. GO and KEGG pathway analysis were conducted to analyze the genes containing SNPs. Our follow up biological validation revealed that 64% of SNPs were true SNPs. Our results show that RNA-sequencing is a fast and efficient method for identification of a large number of SNPs. This work provides significant genetic resources for further research on Cashmere goats, especially for the high density linkage map construction and genome-wide association studies.

Molecular Characterization and Expression Analysis of S6K1 in Cashmere Goats (Capra hircus)

  • Wu, Manlin;Bao, Wenlei;Hao, Xiyan;Zheng, Xu;Wang, Yanfeng;Wang, Zhigang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1057-1064
    • /
    • 2013
  • p70 ribosomal S6 kinase (p70S6K) can integrate nutrient and growth factor signals to promote cell growth and survival. We report our molecular characterization of the complementary DNA (cDNA) that encodes the goat p70S6K gene 40S ribosomal S6 kinase 1 (S6K1) (GenBank accession GU144017) and its 3' noncoding sequence in Inner Mongolia Cashmere goats (Capra hircus). Goat S6K1 cDNA was 2,272 bp and include an open reading frame (ORF) of 1,578 bp, corresponding to a polypeptide of 525 amino acids, and a 694-residue 3' noncoding sequence with a polyadenylation signal at nucleotides 2,218 to 2,223. The relative abundance of S6K1 mRNA was measured by real-time PCR in 6 tissues, and p70S6K expression was examined by immunohistochemistry in heart and testis. The phosphorylation of p70S6K is regulated by mitogen-activated protein kinase (MAPK) signaling in fetal fibroblasts.

Effect of Fungal Elimination on Bacteria and Protozoa Populations and Degradation of Straw Dry Matter in the Rumen of Sheep and Goats

  • Li, D.B.;Hou, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.70-74
    • /
    • 2007
  • An in vitro study was carried out to investigate the differences in rumen microbes and fiber degradation capacity between sheep and goats. Three local male sheep and three Inner Mongolia male cashmere goats (aged 1.5 to 2 years; weight 25.0 to 32.0 kg) were each fitted with a permanent rumen cannula used to provide rumen fluid. Cycloheximide was used to eliminate rumen anaerobic fungi. The results showed that the quantities of fungal zoospores in the culture fluid of the control group were significantly greater in the sheep than in the goats; however, bacteria and protozoa counts were significantly higher in goats than in sheep. The digestibility of straw dry matter did not differ significantly between the two species before elimination of fungi, but tended to be higher for sheep (55.4%) than for goats (53.3%). The results also indicated that bacteria counts increased significantly after elimination of anaerobic fungi; however, the digestibility of straw dry matter significantly decreased by 12.1% and 8.6% for sheep and goats respectively. This indicated that the anaerobic fungi of the rumen played an important role in degradation of fiber.

Expression of Prolactin Receptor mRNA after Melatonin Manipulated in Cashmere Goats Skin during Cashmere Growth

  • Yue, Chunwang;Du, Lixin;Zhang, Wei;Zhu, Xiaoping;Kong, Xianghao;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1291-1298
    • /
    • 2010
  • The aim of this research was to investigate the dynamic changes of the level of total prolactin receptor (PRLR) mRNA and the short form prolactin receptor (S-PRLR) mRNA in skin of cashmere goats from the initiation of cashmere fibre growth to active growth. Eighteen half-sib wethers were allocated randomly to two groups. Melatonin implants were used in order to initiate growth of cashmere fibre before the normal time and reduce blood plasma prolactin (PRL) concentration. Real-time reverse transcription quantitative polymerase chain reaction (real-time PCR) was used to determine PRLR mRNA expression levels of skin from June to November. The results showed that, in Chinese Inner Mongolia cashmere goats, there were seasonal variations in expression of total PRLR mRNA in skin with levels decreasing from June to October. Synchronously, the cashmere fibre growth rate gradually increased during this period, but the expression levels of S-PRLR mRNA did not decrease along with seasonal variation from initiation to active growth of cashmere fibre. These results suggest that expression levels of S- PRLR mRNA might be involved in the process of cashmere growth. It was also possible that the change of alternative splicing of PRLR occurred in the skin of cashmere goats from proanagen to anagen.

Insights into the genetic diversity of indigenous goats and their conservation priorities

  • Liu, Gang;Zhao, Qianjun;Lu, Jian;Sun, Feizhou;Han, Xu;Zhao, Junjin;Feng, Haiyong;Wang, Kejun;Liu, Chousheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1501-1510
    • /
    • 2019
  • Objective: An experiment was conducted to evaluate genetic diversity of 26 Chinese indigenous goats by 30 microsatellite markers, and then to define conservation priorities to set up the protection programs according to the weight given to within- and between-breed genetic diversity. Methods: Twenty-six representative populations of Chinese indigenous goats, 1,351 total, were sampled from different geographic regions of China. Within-breed genetic diversity and marker polymorphism were estimated calculating the mean number of alleles, observed heterozygosities, expected heterozygosities, fixation index, effective number of alleles and allelic richness. Conservation priorities were analyzed by statistical methods. Results: A relatively high level of genetic diversity was found in twenty-four population; the exceptions were in the Daiyun and Fuqing goat populations. Within-breed kinship coefficient matrices identified seven highly inbred breeds which should be of concern. Of these, six breeds receive a negative contribution to heterozygosity when the method was based on proportional contribution to heterozygosity. Based on Weitzman or Piyasatian and Kinghorn methods, the breeds distant from others i.e. Inner Mongolia Cashmere goat, Chengdu Brown goat and Leizhou goat obtain a high ranking. Evidence from Caballero and Toro and Fabuel et al method prioritized Jining Gray goat, Liaoning Cashmere goat, and Inner Mongolia Cashmere goat, which agree with results from Kinship-based methods. Conclusion: Conservation priorities were determined according to multiple methods. Our results suggest Inner Mongolia Cashmere goat (most methods), Jining Gray goat and Liaoning Cashmere goat (high contribution to heterozygosity and total diversity) should be prioritized based on most methods. Furthermore, Daiyun goat and Shannan White goat also should be prioritized based on consideration of effective population size. However, if one breed can continually survive under changing conditions, the straightforward approach would be to increase its utilization and attraction for production via mining breed germplasm characteristics.