• 제목/요약/키워드: Innate Immunity

검색결과 380건 처리시간 0.026초

Neonatal innate immunity and Toll-like receptor

  • Yoon, Hye-Sun
    • Clinical and Experimental Pediatrics
    • /
    • 제53권12호
    • /
    • pp.985-988
    • /
    • 2010
  • The innate immune response is the first line of defense against microbial infections. Innate immunity is made up of the surface barrier, cellular immunity and humoral immunity. In newborn, immunologic function and demands are different to adults. Neonatal innate immunity specifically suppresses Th1-type immune responses, and not Th2-type immune responses, which are enhanced. And the impaired response of macrophages is associated with the defective innate immunity in newborn period. Toll-like receptors (TLRs) play a key roles in the detection of invading pathogens and in the induction of innate immune responses. In newborn, the expression of TLRs is age dependent, so preterm has low expression of TLRs. Also, there are defects in signaling pathways downstream of TLRs. As a consequence, the defects of TLRs activity cause the susceptibility to infection in the neonatal period.

Regulation of Intestinal Homeostasis by Innate Immune Cells

  • Kayama, Hisako;Nishimura, Junichi;Takeda, Kiyoshi
    • IMMUNE NETWORK
    • /
    • 제13권6호
    • /
    • pp.227-234
    • /
    • 2013
  • The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

Role of Innate Immunity in Colorectal Cancer

  • Bora Keum
    • Journal of Digestive Cancer Research
    • /
    • 제6권1호
    • /
    • pp.11-15
    • /
    • 2018
  • Chemotherapy and surgical resection are the mainstay of cancer treatment. Particularly for chemotherapy, although it is effective method to care, sometimes cure various cancers, there are many different status of cancer not being controlled by chemotherapy such as recurrence and resistance to chemotherapy. In order to overcome those difficulties during cancer therapy, immunotherapy targeting immune cells and immune associated factors to enhance cancer immunity has been highlighted. Innate immunity plays important roles on initial stage of cancer immunity that are detecting, killing cancer cells and initiating adaptive immunity for cancer. So many basic and clinical studies to manage innate immunity for cancer therapy have been going on, and most of them were to stimulate innate immune cells including dendritic cell, macrophage, monocyte, and natural killer cell in various ways. They showed promising results but still there are many things to be resolved before clinical application. Herein, I review the role of innate immune cells and therapeutic trials for colorectal cancer.

  • PDF

Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application

  • Hyunseok Kong;Sang Bum Kim
    • IMMUNE NETWORK
    • /
    • 제22권5호
    • /
    • pp.38.1-38.24
    • /
    • 2022
  • Exosomes, which are well-known nanoscale extracellular vesicles, are multifunctional biomaterials derived from endosomes and perform various functions. The exosome is a critical material in cell-cell communication. In addition, it regulates the pathophysiological conditions of the tumor microenvironment in particular. In the tumor microenvironment, exosomes play a controversial role in supporting or killing cancer by conveying biomaterials derived from parent cells. Innate immunity is a crucial component of the host defense mechanism, as it prevents foreign substances, such as viruses and other microbes and tumorigenesis from invading the body. Early in the tumorigenesis process, the innate immunity explicitly recognizes the tumor via Ags and educates the adaptive immunity to eliminate it. Recent studies have revealed that exosomes regulate immunity in the tumor microenvironment. Tumor-derived exosomes regulate immunity against tumor progression and metastasis. Furthermore, tumor-derived exosomes regulate polarization, differentiation, proliferation, and activation of innate immune cells. Exosomes produced from innate immune cells can inhibit or support tumor progression and metastasis via immune cell activation and direct cancer inhibition. In this study, we investigated current knowledge regarding the communication between tumor-derived exosomes and innate immune cell-derived exosomes (from macrophages, dendritic cells, NK cells, and neutrophils) in the tumor microenvironment. In addition, we discussed the potential development of exosomal immunotherapy using native or engineered exosomes against cancer.

일차성 면역결핍질환의 최신 지견 (Recent advance in primary immune deficiency disorders)

  • 강형진;신희영;안효섭
    • Clinical and Experimental Pediatrics
    • /
    • 제52권6호
    • /
    • pp.649-654
    • /
    • 2009
  • The immune system is comprised of cells and molecules whose collective and coordinated response to the introduction of foreign substance is referred to as the immune response. Defense against microbes is mediated by the early reaction (innate immunity) and the late response (adaptive immunity). Innate immunity consists of the epithelial barrier, phagocytes, complement and natural killer cells. Adaptive immunity, a more complex defense reaction, consists of activation of later-developed lymphocytes that, when stimulated by exposure to infectious agents, increase in magnitude and defensive capabilities with each successive exposure. In this review we discuss recent advances in important primary immune deficiency disorders of innate immunity (chronic granulomatous disease, leukocyte adhesion deficiency) and adaptive immunity (severe combined immune deficiency, Wiskott- Aldrich syndrome).

Antimicrobial Peptides in Innate Immunity against Mycobacteria

  • Shin, Dong-Min;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.245-252
    • /
    • 2011
  • Antimicrobial peptides/proteins are ancient and naturally-occurring antibiotics in innate immune responses in a variety of organisms. Additionally, these peptides have been recognized as important signaling molecules in regulation of both innate and adaptive immunity. During mycobacterial infection, antimicrobial peptides including cathelicidin, defensin, and hepcidin have antimicrobial activities against mycobacteria, making them promising candidates for future drug development. Additionally, antimicrobial peptides act as immunomodulators in infectious and inflammatory conditions. Multiple crucial functions of cathelicidins in antimycobacterial immune defense have been characterized not only in terms of direct killing of mycobacteria but also as innate immune regulators, i.e., in secretion of cytokines and chemokines, and mediating autophagy activation. Defensin families are also important during mycobacterial infection and contribute to antimycobacterial defense and inhibition of mycobacterial growth both in vitro and in vivo. Hepcidin, although its role in mycobacterial infection has not yet been characterized, exerts antimycobacterial effects in activated macrophages. The present review focuses on recent efforts to elucidate the roles of host defense peptides in innate immunity to mycobacteria.

감염과 선천면역 (Infection and Innate Immunityi)

  • 오무영
    • Clinical and Experimental Pediatrics
    • /
    • 제48권11호
    • /
    • pp.1153-1161
    • /
    • 2005
  • As known by other name(natural immunity), the innate immune system comprises all those mechanisms for dealing with infection that are constitutive or built in, changing little with age or with experience of infection. Though in some ways less sophisticated than adaptive immunity, innate immunity should not belittled, since it has evidently protected thousands of species of invertebrates sufficiently to survive for up to 2 billion years. In the innate immune system, molecules of both cellular and humoral types are involved, corresponding to the need to recognize and dispose of different types of pathogen, to promote inflammatory responses and to interact to the adaptive immune system. A major features of innate immunity are the presence of the normal gut flora, complements, macrophages, dendritic cells, natural killer cells and many cytokines that can block the establishment of infection. Both phagocytic cells and complement system have tremendous potential for damaging host cells, but fortunately they are normally only triggered by foreign materials, and usually most of their destructive effects are focussed on the surface of these or in the safe environment of the phagolysosome. This article addreses the comprehensive mechanisms of the major components of the innate immune system to prevent the infection.

Overview of Innate Immunity in Drosophila

  • Kim, Tae-Il;Kim, Young-Joon
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.121-127
    • /
    • 2005
  • Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens. Potentially damaging endogenous and/or exogenous challenges sensed by specific receptors initiate signals via the Toll and/or Imd signaling pathways. These in turn activate the transcription factors Dorsal, Dorsal-related immune factor (Dif) and Relish, culminating in transcription of genes involved in the production of antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal rearrangement required for appropriate responses. Clarifying the regulatory interactions between the various pathways involved is very important for understanding the specificity and termination mechanism of the immune response.

Recent Advances in the Innate Immunity of Invertebrate Animals

  • Iwanaga, Sadaaki;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.128-150
    • /
    • 2005
  • Invertebrate animals, which lack adaptive immune systems, have developed other systems of biological host defense, so called innate immunity, that respond to common antigens on the cell surfaces of potential pathogens. During the past two decades, the molecular structures and functions of various defense components that participated in innate immune systems have been established in Arthropoda, such as, insects, the horseshoe crab, freshwater crayfish, and the protochordata ascidian. These defense molecules include phenoloxidases, clotting factors, complement factors, lectins, protease inhibitors, antimicrobial peptides, Toll receptors, and other humoral factors found mainly in hemolymph plasma and hemocytes. These components, which together compose the innate immune system, defend invertebrate from invading bacterial, fungal, and viral pathogens. This review describes the present status of our knowledge concerning such defensive molecules in invertebrates.