• 제목/요약/키워드: Inline Switching

검색결과 3건 처리시간 0.021초

두 개의 단주기 광섬유 격자에서 투과 및 반사 스펙트럼의 동일 선로 스위칭이 가능한 광섬유 필터에 대한 연구 (Study on Optical Fiber Filter Allowing Inline Switching Between Transmission and Reflection Spectra in Two Short-Period Fiber Gratings)

  • 김지훈;이용욱
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.11-19
    • /
    • 2016
  • By incorporating a polarization-diversity loop configuration, we have demonstrated the inline switching of transmission and reflection spectra of one of two short-period fiber gratings (SPFGs) with different resonance wavelengths without reconfiguring the filter structure. The proposed filtering apparatus consists of a fiber-pigtailed polarization beam splitter, two SPFGs, and three quarter-wave plates (QWPs). The proposed filter can independently choose the transmission or reflection spectrum of each SPFG through the appropriate adjustment of the orientation angles of the QWPs within the filter without additional optical switches and couplers. The average insertion loss, band rejection ratio, and side-mode suppression ratio of the fabricated filter were measured as ~4.59, ~17.88, and ~19.67dB, respectively.

서보모터를 이용한 Inline Co-axil 밸브 제어 (Control of Inline Co-Axil Valve using Servo Motor)

  • 이중엽;정태규;이수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1115-1119
    • /
    • 2007
  • Five control methods (Speed Control, PID Gain Scheduling, Loop Time Control, Simple PID, Switching Control) have been applied to the control of an Inline Co-axial valve by the simulation of AMESim. The simulation results have shown that the speed control method is the most stable and the fastest way to reach to the set point in the simulation of the flow control. Moreover, It has been found that the five control methods have the almost same characteristics in the power consumption, the counter electromotive force, and the motor angular velocity. According to the analysis results, the fast and stable control characteristics of the speed control method is the most suitable for the flow control using a inline co-axial valve with a DC(BLCD) motor.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • 오상호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF