• Title/Summary/Keyword: Inlet recirculation

Search Result 116, Processing Time 0.023 seconds

PARAMETRIC NUMERICAL STUDY OF THE REACTING FLOW FIELD OF A COAL SLURRY ENTRAINED GASIFIER (분류층 석탄 가스화기 반응 유동장 변수 전산해석 연구)

  • Song, W.Y.;Kim, H.S.;Shin, M.S.;Jang, D.S.;Lee, Jae-Goo
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.44-51
    • /
    • 2014
  • Considering the importance of the detailed resolution of the reacting flow field inside a gasifier, the objective of this study lies on to investigate the effect of important variables to influence on the reacting flow and thereby to clarify the physical feature occurring inside the gasifier using a comprehensive gasifier computer program. Thus, in this study the gasification process of a 1.0 ton/day gasifier are numerically modeled using the Fluent code. And parametric investigation has been made in terms of swirl intensity and aspect ratio of the gasifier. Doing this, special attention is given on the detailed change of the reacting flow field inside a gasifier especially with the change of this kind of design and operation parameters. Based on this study, a number of useful conclusions can be drawn in the view of flow pattern inside gasifier together with the consequence of the gasification process caused by the change of the flow pattern. Especially, swirl effect gives rise to a feature of a central delayed recirculation zone, which is different from the typical strong central recirculation appeared near the inlet nozzle. The delayed feature of central recirculation appearance could be explained by the increased axial momentum due to the substantial amount of the presence of the coal slurry occupying over the entire gasifier in gasification process. Further, the changes of flow pattern are explained in detail with the gasifier aspect ratio. In general, the results obtained are physically acceptable in parametric study.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

Effect of Inlet Temperature and CO2 Concentration in the Fresh Charge on Combustion in a Homogeneous Charge Compression Ignition Engine Fuelled with Dimethyl Ether (Dimethyl Ether 예혼합 압축 착화 엔진에서 흡기중 CO2 농도와 흡기온도 변화가 연소에 미치는 영향)

  • Bae, Choong-Sik;Jang, Jin-Young;Yeom, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.514-521
    • /
    • 2007
  • This study focused on the effects of the $CO_2$ gas concentration in fresh charge and induction air temperature on the combustion characteristics of homogeneous charge compression ignition with dimethyl ether (DME) fuel, which was injected at the intake port. Because of adding $CO_2$ in fresh charge, start of auto-ignition was retarded and bum duration became longer. Indicated combustion efficiency and exhaust gas emission were found to be worse due to the incomplete combustion. Partial burn was observed at the high concentration of $CO_2$ in fresh charge with low temperature of induction air. However, indicated thermal efficiency was improved due to increased expansion work by late ignition and prolonged bum duration. Start of auto-ignition timing was advanced with negligible change of burn duration, as induction air temperature increased. Burn duration was mainly affected by oxygen mole concentration in induction mixture. Bum duration was increased, as oxygen mole concentration was decreased.

Numerical Analysis on the Internal Flow Field Characteristics of Wind Tunnel Contractions with Morel's Equation (모렐 식을 갖는 풍동수축부의 내부유동장 특성에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-17
    • /
    • 2018
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the internal flow fields characteristics of wind tunnel contractions made by Morel's curve equations. The turbulence model used in this study is a realizable ${\kappa}-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, when the flow passes through the interior space of the analytical models, the flow resistance at the inlet of the plenum chamber is the largest at $Z_m=300$, 400 mm, but the smallest at $Z_m=700mm$. The maximum turbulence intensity in the test section is about 2.5% when calculated by the homogeneous flow, so it is improved by about 75% compared to the 10% turbulence intensity at the inlet of the plenum chamber due to the contraction.

Flow Control in the Vacuum-Ejector System (진공 이젝터 시스템의 유동 컨트롤)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.321-325
    • /
    • 2010
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and/or recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for altitude testing of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser. This paper aims at the improvement of ejector-diffuser performance by focusing attention on reducing exhaust back flow into the test chamber, since alteration of the backflow or recirculation pattern appears as one of the potential means of significantly improving low supersonic ejector-diffuser performance. The simplest backflow-reduction device was an orifice plate at the duct inlet, which would pass the jet and entrained fluid but impede the movement of fluid upstream along the wall. Results clearly showed that the performance of ejector-diffuser system was improved for certain a range of system pressure ratios, whereas the orifice plate was detrimental to the ejector performance for higher pressure ratios. It is also found that there is no change in the performance of diffuser with orifice at its inlet, in terms of its pressure recovery. Hence an appropriately sized orifice system should produce considerable improvement in the ejector-diffuser performance in the intended range of pressure ratios.

  • PDF

Evaluation for the Numerical Model of a Micro-Bubble Pump (미세버블펌프 수치모델평가 및 검증)

  • LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.121-126
    • /
    • 2016
  • Hydraulic performance of a micro-bubble pump has been analyzed by numerical simulation and experimental measurements. Flow recirculation apparatus between the pump inlet and outlet reserviors has been adopted to measure pump performance according to flow conditions sequentially. To analyze three-dimensional flow field in the micro-bubble pump, general analysis code, CFX, is employed. SST turbulence model is employed to estimate the eddy viscosity and compared the pump performance to k-${\varepsilon}$ model. Unstructured grids are used to represent a composite grid system including blade, casing and inlet casing. It is found that the numerical model used in the present study is effective to evaluate the pump performance. From the numerical simulation, low velocity region due to pressure loss is decreased where pump efficiency has maximum value. Detailed flow field inside the micro-bubble pump is also analyzed and compared.

Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header (디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향)

  • Jeong Young-Jun;Kim Seo-Young;Kim Kwang-Ho;Kwak Jae-Su;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

Loss of coolant accident analysis under restriction of reverse flow

  • Radaideh, Majdi I.;Kozlowski, Tomasz;Farawila, Yousef M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1532-1539
    • /
    • 2019
  • This paper analyzes a new method for reducing boiling water reactor fuel temperature during a Loss of Coolant Accident (LOCA). The method uses a device called Reverse Flow Restriction Device (RFRD) at the inlet of fuel bundles in the core to prevent coolant loss from the bundle inlet due to the reverse flow after a large break in the recirculation loop. The device allows for flow in the forward direction which occurs during normal operation, while after the break, the RFRD device changes its status to prevent reverse flow. In this paper, a detailed simulation of LOCA has been carried out using the U.S. NRC's TRACE code to investigate the effect of RFRD on the flow rate as well as peak clad temperature of BWR fuel bundles during three different LOCA scenarios: small break LOCA (25% LOCA), large break LOCA (100% LOCA), and double-ended guillotine break (200% LOCA). The results demonstrated that the device could substantially block flow reversal in fuel bundles during LOCA, allowing for coolant to remain in the core during the coolant blowdown phase. The device can retain additional cooling water after activating the emergency systems, which maintains the peak clad temperature at lower levels. Moreover, the RFRD achieved the reflood phase (when the saturation temperature of the clad is restored) earlier than without the RFRD.

Optimization of Flow Uniformity in an Electrostatic Precipitator (ESP) Duct (전기집진기 (ESP) 덕트 내부 유동 균일화를 위한 연구)

  • Junhyung, Hong;Minseung, Hwang;Joungho, Han;Woongchul, Choi;Jeongmo, Seong;Wontae, Hwang
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.86-93
    • /
    • 2022
  • An electrostatic precipitator (ESP) is an industrial post processing facility for high efficiency dust mitigation. Uniformity of the flow passing through the inlet duct leading into the main chamber is important for efficient reduction of dust. To examine flow uniformity, this study conducted a numerical analysis of the flow within a scale-down ESP inlet duct. Magnetic resonance velocimetry (MRV) results from a prior study were utilized to validate the Reynolds-averaged Navier-Stokes (RANS) numerical simulations. Both the experimental and computational results displayed a similar recirculation zone shape and normalized velocity profile near the duct outlet for the baseline geometry. To optimize the uniformity of the flow, the number of guide vanes was modified, and the guide vanes were partially extended straight upward. Design evaluation is done based on the outlet velocity distribution and mass flowrate balance between the two outlets. Simulation results indicate that the vane extension is critical for flow optimization in curved ESP ducts.

Discussion on the Practical Use of CFD for Furnaces;A Case of Grate Type Waste Incinerators (연소로 열유동 해석 방식과 결과 분석에 대한 고찰;화격자식 소각로의 사례)

  • Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.85-94
    • /
    • 2002
  • Computational flow dynamics(CFD) has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Though it needs many simplifications and complicated flow models, the reasonability of its results is not fully evaluated. For example, the inlet condition is calculated from an arbitrarily assumed properties of combustion gas release from the waste bed, since the combustion in the bed is difficult to be predicted. In this study, the computational modeling and calculation procedures of CFD for the grate type waste incinerator were evaluated using comparative simulations. Though the assumption method on the generation of the combustion gas directly affected the temperature and gas species concentrations, the overall flow pattern was dominated by the secondary air jets. The gaseous reaction could be included by assuming the release of the products of incomplete combusion from the bed. However, the reaction effficiency cannot not be directly evaluated from the species concentration, since it is not possible to simulate the actual co-existence of fuel rich or oxygen rich puffs over the bed. In predicting the turbulence, the higher order model, such as Reynolds stress model, gave difference shape of local recirculation zones, but similar results was acquired from the standard $k-{\varepsilon}$ model. Introducing radiation model was required for accurate temperature prediction, but it also caused heat imbalance due to the fixed temperature of the inlet, i.e. the waste bed. Thus, the computational modeling procedures on incinerators and the analysis of the predicted results should be progressed carefully. Though not validated experimentally, current simulation method is capable of comparative evaluation on the flow-related parameters such as the furnace shape and secondary air injection using identical inlet conditions. Quantitative analysis using measures of the residence time and mixing is essential to compare the flow performance efficiently.

  • PDF