• Title/Summary/Keyword: Inlet and Outlet Water Temperature Difference

Search Result 33, Processing Time 0.029 seconds

Varietal Differences in Days Required to Leaf Expansion, Leaf Number on Main Culm, and Days to Heading of Rice under Cold Water Flow System (찬물 흘려대기 논의 수온 분포에 따른 벼의 엽 전개 일수 및 주간엽수와 출수일수의 품종간 차이)

  • 윤성호;윤종선;유길림;박창기;정근식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.3
    • /
    • pp.214-219
    • /
    • 1991
  • To clarify the relationship between ambient water temperature and heading characteristics of rice (Oryza sativa L.), twelve of varieties rice were grown in a cold tolerance screening field where water temperature was controlled by continuous cold water irrigation system to test the cold tolerance of rice. When cold water was continuously irrigated with 5 cm of water depth, the water had stagnated for about three hours, and the water temperature increased gradually from inlet toward outlet in the experimental plot. The fluctuation of water temperature was well synchronized with that of ambient air temperature, and the water temperature near outlet became higher than the air temperature at the vegetative phase, while became lower at the reproductive phase of rice plant community. The leaf development rates on main culm increased by increased water temperature. The rice varities, Fukuhikari, Sangpungbyeo and YR3486-16-2 were more sensitive than the others in the response of leaf development to water temperature. However, Janack and Milyang 42 were comparatively less sensitive to water temperature in leaf development. Janack and Paro -white rices required longer days to develop one leaf on main culm at reproductive phase than at vegetative phase. Varietal difference in days required to develop one leaf on main culm of rice plant was more distinctive at the reproductive phase when water temperature was relatively lower than at the vegetative phase with relatively higher water temperature condition. No difference was found between the growth phases, vegetative and reproductive, in the response of average leaf developmental rates to water temperature under the similar air temperature condition. The estimated average days required to develop one leaf on main culm decreased by 1.3 day by 1$^{\circ}C$ increase in water temperature. Varietal differences in the total number of leaves on main culm depended upon the water temperature, in which the varieties such as Fukuhikari, Gwangmyeon-gbyeo, China 988, and YR3486-16-2 showed increased one leaf by increased water temperature, while Sobaekbyeo, Paro-white, Sangpungbyeo, Pungsanbyeo, Samgangbyeo, and Milyang 42 were kept at the same leaf number regardless of water temperature. However, the total leaf number on main culm and days to heading of Janack increased by increased water temperature. The other varieties showed the shortened days to heading by the increase in water temperature with noticeable varietal differences regardless of the variation in the total number of leaves on main culm.

  • PDF

A Numerical Study on the Thermopneumatic and Flow Characteristics of Diffuser-Nozzle Based Thermopneumatic Micropumps (디퓨져와 노즐을 이용한 열공압형 마이크로 펌프의 열공압 및 유동특성에 관한 수치해석적 연구)

  • Jeong Jin;Kim Chang Nyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.642-648
    • /
    • 2005
  • This study has been conducted to investigate the thermopneumatic and flow characteristics of diffuser/nozzle based thermopneumatic micropumps. In this study, a transient three-dimensional numerical analysis using FSI (Fluid-Structure Interaction) model has been employed to analyze the effects of the interaction between the membrane and two fluids (air and water) in the thermopneumtic micropump. The transient temperature and pressure in the cavity, the transient displacements of the membrane and the net flow rate of the micropump have been closely calculated for the frequency of 1 Hz. It has been found that the difference of the flow rates at the inlet and outlet is larger in the cooling period than in the heating period and that the duty ratio is very important in association with pump performance because the temperature in the cavity ascends drastically in the heating period and descends slowly in the cooling period. This study can be regarded as fundamental understandings for the design and analysis of thermopneumatic micropumps.

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Development of Temperature Control System to use in Building Heating of low Temperature Heat of PEMFC (고분자전해질 연료전지의 중저온 열원을 건물난방에 이용하기 위한 온도 제어장치 개발)

  • Cha, Kwang-Seok;Kim, Hway-Suh
    • Plant Journal
    • /
    • v.10 no.3
    • /
    • pp.45-51
    • /
    • 2014
  • This study performs several experiments on a newly developed temperature safety system that can be used for residential building heating systems, the heat source of which is derived from a conventional fuel cell. Prior to this, the hot water made from a fuel cell was not used in residential housing but just went to waste. The present safety system is installed in the current underfloor heating system. At first we used the CFD technique to develop a new heat exchanger. The fuel cell must satisfy the thermal conditions of the inlet temperature being $55^{\circ}C$ and the outlet temperature being $60^{\circ}C$. But variations in weather cause fluctuations in the heating water temperature. The experimental results show our new system capable of maintaining the temperature difference within a ${\pm}0.5^{\circ}C$ range. So we believe that our new PFMFC fuel cell stack array is a good candidate for being used in residential heating systems.

  • PDF

Hydraulic Tests of Fuel Pump for 75-ton class Liquid Rocket Engines (75톤급 로켓엔진용 연료펌프의 수력성능시험)

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.78-81
    • /
    • 2009
  • A series of hydraulic tests of a fuel pump are performed using water at a room temperature. The pump is under development for 75-ton class liquid rocket engines of the open-loop gas generator type. According to the test results, the fuel pump satisfies its design requirement and its head and efficiency at the design flowrate are higher than the expected value by the computational analysis. Also, it is found that the pressure at the rear bearing outlet is higher than expected because the inlet of bypass pipe line is narrow. Furthermore, the flowrate of the secondary flow is estimated using the pressure difference of the elbow of the bypass pipe line.

  • PDF

Effect of Water Temperature on Ammonia Excretion of Juvenile Dark-banded Rockfish Sebastes inermis (볼락 Sebastes inermis 치어의 암모니아 배설에 미치는 수온의 영향)

  • Oh, Sung-Yong;Choi, Sang-Jun
    • Ocean and Polar Research
    • /
    • v.31 no.3
    • /
    • pp.231-238
    • /
    • 2009
  • A study was carried out to investigate the effect of water temperature on daily pattern and rate of total ammonia nitrogen (TAN) excretion in juvenile dark-banded rockfish Sebastes inermis (mean body weight: $14.8{\pm}0.3g$) under fasting and feeding conditions. Fish were acclimated over 10 days under three different water temperatures (15, 20 and $25^{\circ}C$). After 72 hours of starvation, fasting TAN excretion was measured at each temperature. To investigate post-prandial TAN excretion, fish were hand-fed with a commercial diet containing 47.7% crude protein for 7 days, two times daily at 09:00 and 17:00 hr. Water was sampled from both the inlet and outlet of each chamber every 2 hrs over a 24 hr period. Both fasting and post-prandial TAN excretion increased with increase in water temperature (P<0.05). Mean fasting TAN excretion rates at 15, 20 and $25^{\circ}C$ were 8.1, 9.0 and 9.2 mg TAN kg $fish^{-1}h^{-1}$, respectively. The value of $15^{\circ}C$ was lower than those of 20 and $25^{\circ}C$ (P<0.05), but there was no significant difference between $20^{\circ}C$ and $25^{\circ}C$ (P>0.05). Mean post-prandial TAN excretion rates at 15, 20 and $25^{\circ}C$ were 20.1, 22.9 and 23.4 mg TAN kg $fish^{-1}h^{-1}$, respectively. A peak post-prandial TAN excretion rate occurred after 12 hrs from the first feeding at $15^{\circ}C$ (mean 28.7 mg TAN kg $fish^{-1}h^{-1}$), $20^{\circ}C$ (33.7 mg TAN kg $fish^{-1}h{-1}$) and $25^{\circ}C$ (36.8 mg TAN kg $fish^{-1}h{-1}$), respectively. The TAN loss for ingested nitrogen at $15^{\circ}C$ (36.2%) was lower than that of $20^{\circ}C$ (40.8%) and $25^{\circ}C$ (41.7%). Based on overall results, water temperature exerts a profound influence on the nitrogen metabolism of juvenile dark-banded rockfish.

Development of a Solar Powered Water Pump by Using Low Temperature Phase Change Material ­ System Construction and Operation Analysis ­ (저온 상변화 물질 특성을 이용한 태양열 물펌프 실용화 연구개발(II) ­시스템 구성 및 작동분석)

  • 김영복;이양근;이승규;김성태;나우정;민영봉
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • In this study, the energy conversion equipment from the radiation energy to mechanical energy by using n­pentane as the operating fluid was constructed and the performance to pump the water was tested for the utilization of solar powered water pump. The equipment was designed optimally, after the theoretical analyses of the water pumping head and water quantity per cycle were done. The pentane vapour temperature in the condenser and the temperature of the outlet water from the condenser became lowered and the heat transfer rate became higher with decreasing the water inlet level to the condenser. The temperature difference between the condenser and the water tank was significant. Therefore, the distance between the water tank and condenser was recommended to be shorten and the diameter of their connecting pipe was recommended to be narrow in order to reduce the resistance of the fluid passage and improve the heat transfer rate. The amount of water pumped was 1.6­2.4 liters. Mass flow rate of the cooling water became lowered when the cooling water pipe was prolonged from the condenser to improve the heat transfer rate.

  • PDF

An Empirical Study on the Thermal Performance and Dynamic Behavior of Wall Integrated Thermosiphon Solar Water Heater (벽체일체형 자연순환 태양열온수기의 동적거동과 열성능에 관한 실증연구)

  • Baek, Nam-Choon;Kim, Sung-Bum;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.25-35
    • /
    • 2016
  • In this study, the evaluation of the dynamic behavior and thermal performance of the "Façade integrated Natural circulation Solar Water Heating System" installed in the residential house was carried out. Experimental tests were performed during the all year around in the rural houses of $166m^2$ in size. Facade integrated solar collector of $5m^2$ were installed on the south-facing. Electrical heater of 1 kW capacity as an auxiliary heater was installed at the upper part of the heat storage tank. The analyzing results are as follows. (1) Monthly average solar fraction was 51 to 87% and yearly average value is 64%. (2) Hot water supply temperature in December which has the lowest solar altitude is 37 to $76^{\circ}C$. The highest working fluid temperature of solar collector in this period was below $84^{\circ}C$. The temperature difference of working fluid between the collector inlet and outlet has been shown to be around 9 to $26^{\circ}C$. (3) Overheating which is one of the biggest problems during summer did not appear at all, but rather had hot water supply temperature is rather low as $30{\sim}47^{\circ}C$ in summer than winter, which is supplied by a small solar load. The solar collecting temperature has been shown to maintain below $55^{\circ}C$. (5) The thermal performance of Facade integrated solar collector can be increase due to the reduction of heat loss to the back of the collector wall integration of the collector is reduced. As a conclusion, Facade integrated natural circulation type Solar Water Heating System is a well-functioning without any pumps or controllers, and it was found that the disadvantages of conventional solar water heaters, hot water or hot water system can be greatly improved.

Analytic study on thermal management operating conditions of balance of 100kW fuel cell power plant for a fuel cell electric vehicle (100kW급 연료전지 열관리 시스템 실도로 운전조건 해석적 연구)

  • Lee, Ho-Seong;Lee, Moo-Yeon;Cho, Choong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • The objective of this study was to investigate performance characteristics of thermal management system(TMS) in a fuel cell electric vehicle with 100kW Fuel Cell(FC) system. In order to build up analytic modelling for TMS, each component was installed and tested under various operating conditions, such as water pump, radiator, 3-Way valve, COD heater, and FC stack etc. and as the results of them, correlations reflecting component's characteristics with flow rate, air velocity were developed. Developed analytic modelling was carried out under various operating conditions on the road. To verify modelling's accuracy, after prediction for optimum coolant flow rate was fulfilled under certain operating conditions, such as FC system, water pump speed, opening of 3-way valve, and pipe resistance, analytic and experimental values were compared and good agreement was shown. In order to predict cold-start operating performance for analytic modelling, coolant temperature variation was analyzed with $-20^{\circ}C$ ambient temperature and duration was predicted to rise in optimum temperature for FC. Because there is appropriate temperature difference between inlet and outlet of FC stack to operate FC system properly, related analysis was performed with respect to power consumption for TMS and heat rejection rate and performance map was depicted along with FC operating conditions.

Effect of Water Temperature on Ammonia Excretion of Juvenile Pacific Cod Gadus macrocephalus (대구 Gadus macrocephalus 치어의 암모니아 배설에 미치는 수온의 영향)

  • Oh, Sung-Yong;Park, Heung-Sik;Noh, Choong-Hwan
    • Korean Journal of Ichthyology
    • /
    • v.22 no.3
    • /
    • pp.147-153
    • /
    • 2010
  • A study was carried out to examine the effect of water temperature on daily pattern and rate of total ammonia nitrogen (TAN) excretion in juvenile Pacific cod Gadus macrocephalus (mean body weight: $36.5{\pm}0.8\;g$) under fasting and feeding conditions. Fish were acclimated over 10 days under three different water temperatures (9, 11 and $13^{\circ}C$), and transferred to TAN measuring system under each water-temperature condition. After 72 hours of starving, fasting TAN excretion was measured at each temperature. To investigate post-prandial TAN excretion, fish were hand-fed with a commercial diet containing 40.6% crude protein for 7 days, two times daily at 08:00 and 16:00 h. Water was sampled from both the inlet and outlet of the fish chamber every 2 h over a 24-h period. Both fasting and post-prandial TAN excretion increased with increased water temperatures (p<0.05). Mean fasting TAN excretion rates at 9, 11 and $13^{\circ}C$ were 9.3, 11.0 and $11.9\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. The value of $9^{\circ}C$ was lower than those of 11 and $13^{\circ}C$ (p<0.05), but there was no significant difference between $11^{\circ}C$ and $13^{\circ}C$. Mean post-prandial TAN excretion rates at 9, 11 and $13^{\circ}C$ were 23.0, 31.6 and $45.4\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. A peak value of post-prandial TAN excretion rate occurred after 2 h from each feeding, and the second value is always higher than the first value. Maximum post-prandial TAN excretion rate occurred after 10 h from the first feeding at $9^{\circ}C$ (mean $38.0\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), $11^{\circ}C$ ($52.9\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$) and $13^{\circ}C$ ($77.5\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), respectively. The TAN loss for ingested nitrogen at $9^{\circ}C$ (43.9%) was lower than those of $11^{\circ}C$ (46.4%) and $13^{\circ}C$ (48.4%). The overall results indicate that water temperature exhibits a significant effect on the nitrogen excretion of juvenile Pacific cod.