• Title/Summary/Keyword: Inlet Temperature

Search Result 1,506, Processing Time 0.03 seconds

Effects of longitudinal conduction on the performance of heat transfer surfaces (유동방향의 열전도가 전열면의 성능에 미치는 영향)

  • Park, Byung-Kyu;Hong, Taek;Park, Sang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.561-569
    • /
    • 1999
  • The effects of longitudinal heat conduction on the performance of heat transfer surfaces are investigated by using a single-blow method. In the transient testing method for determining the heat transfer characteristics, exponential inlet temperature variations are made by using screen-mesh heater with small time constant and low frontal velocities of the test section, and the experimentally determined inlet temperature profile is used as the inlet fluid temperature condition. The effects of longitudinal heat conduction are negligible only if $\gamma^\act<0.05\;and \;N_{tu}\le3$ and should be considered if $N_{tu}\le3$ The test results ate compared with the existing theoretical and experimental data and the validity of this technique is confirmed by the good agreement.

  • PDF

Performance Comparison of Hot-gas Bypass Types with the Variation of Refrigeration Load (부하변화에 따른 hot-gas 바이패스 방식별 성능 비교)

  • Baek, Seung-Moon;Yoon, Jung-In;Son, Chang-Hyo;Heo, Jung-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, three refrigeration systems bypassing hot-gas to compressor outlet, compressor and condenser outlet and evaporator inlet are theoretically compared to offer basic design data for performance depending on cooling load using a HYSYS program. The main results are summarized as follows : First, the COP of third system is the highest. Next, the COP of second system is higher than first one. And, the temperature of compressor inlet of third system is constant for all cooling load. Compared to first and second system, the compressor inlet temperature of the first system is higher than second one for all cooling loads. From the above results, third system, which is bypassing hot-gas to evaporator inlet, is more advantageous when considering the precise temperature control and excellent performance of oil and water cooler of industrial machine.

Performance Analysis of Turbofan Engine for Turbine Cooling Design (터빈 냉각설계를 위한 터보팬 엔진의 성능해석)

  • Kim, Chun-Taek;Rhee, Dong-Ho;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.

Analysis on Characteristics of Thermal Flow for Heating Indoor Space by Air-heating Collector using Solar Heat (태양열 공기가열 집열기에 의한 난방 실내공간의 열유동 특성 해석)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.271-278
    • /
    • 2022
  • The solar energy has been widely used to reduce the fossil fuel and prevent the environmental pollution. The renewable energy including solar heat tends to spread due to carbon neutrality for main country of the world. Targets of solar collector are usually acquisitions of hot water or hot air. Especially, air-heating collector using solar heat is known as the technology for obtaining hot air. This study aims to investigate of characteristics of thermal flow when the hot air by air-heating collector using solar heat flows inside of indoor space. The thermal flow of heating indoor space was simulated using ANSYS-CFX program and thus the behaviors of hot air in indoor space were evaluated with standard k-𝜀 turbulence model. As the results, as the inlet velocity was increased, the behaviors of hot air became simple, and temperature range of 25~75℃ had almost no effect on behavior of flow. As the inlet temperature was increased, the temperature curve of indoor space from bottom to top was changed from linear to quadratic. Furthermore, it was confirmed that inlet velocity as well as inlet temperature also should be considered to heat indoor space equally by air-heating collector using solar heat.

Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process (분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향)

  • Yu Jae-Keun
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

SIMULATION OF THERMAL STRATIFICATION IN INLET NOZZLE OF STEAM GENERATOR

  • Ji, Joon-Suk;Youn, Bum-Su;Jeong, Hyun-Chul;Kim, Sang-Nyung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • Due to thermal hydraulics phenomena, such as thermal stratification, various events occur to the parts of a nuclear power plant during their lifetimes: e.g. cracked and dislocated pipes and thermally fatigued, bent, and damaged supports. Due to the operational characteristics of the parts of the steam generator feedwater inlet horizontal pipe, thermal stratification takes place particularly frequently. However, the thermal stress due to thermal stratification at the steam generator feedwater inlet horizontal pipe was not reflected in the design stage of old plants(Kori Unit No.1, 2, 3 and 4, Yeonggwang Unit No. 1 and 2, and Uljin Unit No. 1 and 2; referred to as old-style power plants hereinafter). Accordingly, a verification experiment was performed for thermal stratification in the horizontal inlet nozzle steam generator of old-style plants. If thermal stratification occurred in the horizontal pipe of an old-style power plant, numerical analysis of the temperature distribution of the pipes and fluids was conducted. The temperature distributions were compared at the curved part of the pipe and the horizontal pipe before and after the installation of the improved thermal sleeves designed to alleviate thermal stress due to thermal stratification. The thermal stress reduction measure was proven effective at the steam generator inlet horizontal pipe and the curved part of the pipe.

Effects of Inlet Water Temperature and Heat Load on Fan Power of Counter-Flow Wet Cooling Tower (입구 물온도와 열부하가 냉각탑의 팬동력에 미치는 영향 분석)

  • Nguyen, Minh Phu;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.267-273
    • /
    • 2013
  • In order to provide effective operating conditions for the fan in a wet cooling tower with film fill, a new program to search for the minimum fan power was developed using a model of the optimal total annual cost of the tower based on Merkel's model. In addition, a type of design map for a cooling tower was also developed. The inlet water temperature and heat load were considered as key parameters. The present program was first validated using several typical examples. The results showed that for a given heat load, a three-dimensional graph of the fan power (z-axis), mass flux of air (x-axis, minimum fan power), and inlet water temperature (y-axis, maximum of minimum fan power) showed a saddle configuration. The minimum fan power increased as the heat load increased. The conventionally known fact that the most effective cooling tower operation coincides with a high inlet water temperature and low air flow rate can be replaced by the statement that there exists an optimum mass flux of air corresponding to a minimum fan power for a given inlet water temperature, regardless of the heat load.

Experimental Study on the Characteristics of the Film Pressure and Temperature in a 5-Pad Tilting Pad Journal Bearing of LOP Type (LOP형 5패드 틸팅패드 저어널베어링의 압력 및 온도 특성에 관한 실험적 연구)

  • 하현천;양승헌;변형현
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • The static characteristics of a five-pad tilting pad journal bearing of load on pad (LOP) type have been investigated experimentally under the different values of bearing load and shaft speed. The diameter and length of the bearing are 300.91 mrn and 149.8 mm, reslx;ctively. Circumferential distribution of the film pressure, film thickness, journal surface temperature and beating surface temperature are measured. A noticeable inlet pressure rise is observed at the entrance of each pad, especially the bottom pad. The inlet pressure is increased by the increase of shaft speed as well as bearing load. In the five-pad tilting pad joumal bearing of LOP type, almost all of beating load is being carried only by the bottom pad. The maximum bearing surface temperature is observed at near the minimum film thickness. It is observed that the metal temperature of the mid-plane is higher than that of the edge at the inlet region, while the metal temperature of the edge is higher than that of the mid-plane at the outlet region.

A Numerical Study for the Maximizing Water Vapor Flux and Thermal Efficiency in Direct Contact Membrane Distillation (DCMD) Process (직접 접촉식 막증류 공정에서 담수 투과량 및 열효율 극대화를 위한 수치적 연구)

  • Kim, Sang-Hun;Lee, Jung-Gil;Kim, Woo-Seung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.369-380
    • /
    • 2012
  • A one-dimensional numerical model based on the energy and mass equations have been developed to predict the trans membrane water vapor flux and thermal efficiency under various operating conditions in Direct Contact Membrane Distillation (DCMD) process. The model validation have been carried out by experimental data from literature and showed good agreement. The effect of operating parameters such as brine inlet temperature and velocity, and distillate inlet temperature and velocity to increase water vapor flux and thermal efficiency were predicted by the steady-state model. The results showed that the inlet temperature and velocity in brine side are dominant factors to control the water vapor flux and thermal efficiency because the effect of inlet temperature and velocity in brine side showed the higher water vapor flux and thermal efficiency than that of inlet temperature and velocity in distillate side. The water vapor flux was increased 3.4 times in the range of 21.22 $kg/m^2h$ to 71.26 $kg/m^2h$ and the thermal efficiency was increased 37.5% in that of 0.556 to 0.765 with increasing brine inlet temperature from $60^{\circ}C$ to $95^{\circ}C$. Meanwhile, the water vapor flux was increased 30% in that of 27.91 $kg/m^2h$ to 36.33 $kg/m^2h$ and thermal efficiency increased 7.5% in that of 0.6 to 0.646 as the brine inlet velocity was increased from 60 m/h to 300 m/h.

Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes (가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.