• Title/Summary/Keyword: Inlet Temperature

Search Result 1,510, Processing Time 0.029 seconds

Experimental Study on the Diagnosis and Failure Prediction for Long-term Performance of ESP to Optimize Operation in Oil and Gas Wells (유·가스정 최적 운영을 위한 ESP의 장기 성능 진단 및 고장 예측 실험 연구)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2023
  • In general, electric submersible pumps (ESPs), which have an average life of 1.0 to 1.5 years, experience a decrease in performance and a reduction in life of the pump depending on oil and gas reservoir characteristics and operating conditions in wells. As the result, the failure of ESP causes high well workover costs due to retrieval and installation, and additional costs due to shut down. In this study, a flow loop system was designed and established to predict the life of ESP in long­term operation of oil and gas wells, and the life cycle data of ESP from the time of installation to the time of failure was acquired and analyzed. Among the data acquired from the system, flow rate, inlet and outlet temperature and pressure, and the data of the vibrator installed on the outside of ESP were analyzed, and then the performance status according to long-term operation was classified into five stages: normal, advice I, advice II, maintenance, and failed. Through the experiments, it was found that there was a difference in the data trend by stage during the long­term operation of the ESP, and then the condition of the ESP was diagnosed and the failure of the pump was predicted according to the operating time. The results derived from this study can be used to develop a failure prediction program and data analysis algorithm for monitoring the condition of ESPs operated in oil and gas wells.

The Effect of SO2 and H2O on the NO Reduction of V2O5-WO3/TiO2/SiC Catalytic Filter (V2O5-WO3/TiO2/SiC 촉매필터의 NO 환원에 SO2와 H2O가 미치는 영향)

  • Ha, Ji-Won;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.688-693
    • /
    • 2014
  • For investigating NO reduction activity of an catalytic filter, the catalytic performance was measured under the presence of $SO_2$ and $H_2O$, respectively or simultaneously in the simulation gas composed of NO, $NH_3$, and air. The catalytic filter was prepared by coating $V_2O_5-WO_3/TiO_2$ catalyst on the pore surface of SiC filter element of which the superior performance for the particulate removal was well known. At the temperature below $260^{\circ}C$, the catalytic activities were enormously decreased under the presence of $SO_2$ and $H_2O$, respectively or simultaneously, compared with those under the cases of the absence of $SO_2$ and $H_2O$. However, the presence of $SO_2$ promoted the performance of the catalytic filter above $320^{\circ}C$ with showing the NO conversion better than 99.8% for the NO inlet concentration of 500 ppm and at the face velocity of 2 cm/s. In particular, the presence of water showed high NO conversion higher than 99% up to high temperature of $380^{\circ}C$. This effect of water was explained by the reason that it retarded the ammonia oxidation which is the main step into the formation of $N_2O$. The initial NO reduction activity of the catalytic filter maintained for the duration of 100 hours in the presence of $SO_2$ and $H_2O$. Therefore, it was concluded that the catalytic filter was promisingly useful for the industrial NOx reduction catalyst in order to treat the particulate and NO simultaneously.

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

Characteristics of Water Quality Parameters of Han River Related to THMs Formation in Water Treatment Plants in Seoul (서울시 정수장의 THMs 생성과 관련된 한강 원수의 주요 수질 특성 조사)

  • Lee, Jin-Hyo;Lee, Ki-Seon;Hwang, Dong-Hyun;Lee, Man-Ho;Han, Sun-Hee;Park, Yong-Sang;Lee, Mok-Young;Lee, Jin-Sook;Koo, Ja-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.886-892
    • /
    • 2011
  • In a study on THMs formation at the distribution facilities in Seoul water supply for past 3 years from 2007 to 2009, THMs production was increased from inlet to outlet during the process in water treatment plant. However, such increased THMs amount was very small compared to THMs production formed after pre-chlorination and post chlorination. Accordingly, this study is aimed to investigate the characteristics of water quality parameters of Han River related to THMs formation in 6 water treatment plants in Seoul. The results showed that THMs and other factors such as temperature (r = 0.539~0.846) and turbidity (r = 0.421~0.863) had positive correlation while THMs had negative correlation with pH (r = -0.613~-0.800) and algae (r = -0.582~-0.901). There is no correlation between THMs and $NH_3-N$. According to the factor analysis, generally metabolite and organic matter factor $X_1$ (pH, BOD, algae), and seasonal and natural factor $X_2$ (temperature, turbidity) played an important role in the formation of THMs. Multiple regression analysis for THMs formation showed significance of regression appeared in most water systems.

Monitoring Bacillus cereus and Aerobic Bacteria in Raw Infant Formula and Microbial Quality Control during Manufacturing (영.유아용 식품원료의 Bacillus cereus와 일반세균 모니터링 및 제조공정 중 미생물 품질제어)

  • Jung, Woo-Young;Eom, Joon-Ho;Kim, Byeong-Jo;Ju, In-Sun;Kim, Chang-Soo;Kim, Mi-Ra;Byun, Jung-A;Park, You-Gyoung;Son, Sang-Hyuck;Lee, Eun-Mi;Jung, Rae-Seok;Na, Mi-Ae;Yuk, Dong-Yeon;Gang, Ji-Yeon;Heo, Ok-Sun;Yoon, Min-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.494-501
    • /
    • 2010
  • The purpose of this study was to examine the presence of Bacillus cereus, aerobic bacteria and coliforms in the raw material of infant formulas and investigate the manufacturing process in terms of microbial safety. Among ten kinds of raw infant formula material samples (n=20), Bacillus cereus appeared in two (n=4). Aerobic bacteria were not detected in raw infant formula material or maximum 4.15 log CFU/g. Eleven species of aerobic bacteria were isolated and 76% of them were Sphingomonas paucimobilis, Pseudomonas fluorescens, Rhizobium radiobactor, or Stenotrophomonas maltophilia. A Pearson's correlation analysis revealed that the most influential factors for detecting Bacillus cereus were aerobic bacteria and coliforms. In other words, when the measured values of aerobic bacteria and coliforms were higher, the possibility that Bacillus cereus would appear increased. In a regression model to predict Bacillus cereus, the rate of appearance was correlated with aerobic bacteria and coliforms, and its contribution rate for effectiveness was 86%. Improving microbial quality control by pasteurization, spray dry, popping and extrusion resulted in a decrease in the numbers of Bacillus cereus, aerobic bacteria and coliforms in the raw materials. The results suggest that a hazard analysis and critical control point system might be effective for reducing microbiological contamination.

Studies on the Effects of Various Methods of Rotation Irrigation System Affecting on The Growth, Yield of Rice Plants and Its Optimum Facilities (수환관개방법의 차이가 수도생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1937-1947
    • /
    • 1970
  • This experiment was conducted, making use of the 'NONG-RIM No, 6' a recommended variety of rice plant for the year of 1969. Main purpose of the experiment are to explore possibilities of; a) ways and means of saving irrigation water and, b) overcoming drought at the same time so that an increaded yield in rice production could be resulted in Specifically, it was tried to determine the effects of the Rotation Irrigation method combined with differentiated thickess of Lining upon the growth and Yield of rice production. Some of the major finding are summarized in the follows. 1) The Different thicknesses show a significant relationship with the weight of 1000 grains. In the case of 3cm Lined plot, the grain weight is 39.0 Grams, the heaviest. Next in order is 6 cm lined plnt, 5 day control plot, 6 day control plot. 2) In rice yield, it is found that there is a considerably moderate signicant relationship with both the different thickness of lining and the number of irrgation, as shown in the table No,7. 3) There is little or no difference among different plot in terms of; a) physical and chemical properties of soil, b) quality of irrgation water, c) climatic condition, and rainfalls. 4) It is found that there is no significant relationship between differences in the method of rotation irrgation and the number of ears per hill because of too much rainydays and low temperature during irrigation season. 5) In uyny1-treated plots, it is shown that there is on difference among different plots, but the irrigation water requirement saved as much as 1/2 to actual irrigation water compare to uncontroled plot. 6) The irrigation water requirement for 48 days is saved as much 67% compared to uncontroled plot, the order are; the 9cm lined plot, the plot of vinyl with no hole, the plot with a hole of $1cm/m^2$ as shows in fig 15. 7) The rate of percolation of 40-30mm/day is decreased to 30-20/day. It is found that the decreasad rate of percolation due to vinyl-cutoff in footpath. 8) The growing condition was fine, and there was no found that decease and lageing as always submerged plot. 9) It is found that it must be constructed irrigation and drainage system, inlet and outlet perpect, respectly, of which could be irrigation water saved and would be inereased the irrigation water temperature.

  • PDF

A Study on the Shape and Movement in Dissolved Air Flotation for the Algae Removal (수중조류제거(水中藻類除去)를 위한 가압부상(加壓浮上)에 있어서 기포(氣泡)의 양태(模態)에 관한 연구(研究))

  • Kim, Hwan Gi;Jeong, Tae Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.79-93
    • /
    • 1984
  • The dissolved air flotation(DAF) has been shown to be efficient process for the removal of algae ftom water. The efficiency of DAF can be affected by the volume ratio of pressurized liquid to sample, the pressure pressurized liquid, the contact time, the appropriate coagulant and its amount, the water temperature, the turbulence of reactor, the bubble size and rising velocity etc. The purpose of this paper is to compare the practical bubble rising velocity with the theoretical one, to investigate the adhesion phenomenon of bubbles and floc, and the influence of bubble size and velocity upon the process. The results through theoretical review and experimental investigation are as follows: Ives' equation is more suitable than Stokes' equation in computation of the bubble rising velocity. The collection of bubble and algae floc is convective collection type and resulted from absorption than adhesion or collision. The treatment efficiency is excellent when the bubble sizes are smaller than $l00{\mu}m$, and the turbulence of reactor is small. In the optimum condition of continuous type DAF the volume ratio of pressurized liquid to sample is 15%, the contact time in reactor is 15 minutes, the pressure of pressurized liquid is $4kg/cm^2$ and the distance from jet needle to inlet is 30cm.

  • PDF

Performance Evaluation of K-based Solid Sorbents Depending on the Internal Structure of the Carbonator in the Bench-scale CO2 Capture Process (벤치급 CO2 포집공정에서 흡수반응기의 내부구조에 따른 K-계열 고체흡수제의 성능평가)

  • Kim, Jae-Young;Lim, Ho;Woo, Je Min;Jo, Sung-Ho;Moon, Jong-Ho;Lee, Seung-Yong;Lee, Hyojin;Yi, Chang-Keun;Lee, Jong-Seop;Min, Byoung-Moo;Park, Young Cheol
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, the performance characteristics of the K-based sorbents (KEP-CO2P2, KEPCO RI, Korea) has been studied in relation with the heat exchanger structure and shape in a mixing zone of the carbonator in the bench-scale dry $CO_2$ capture process. Two types of heat exchangers (different structure and shape) were used in the carbonator as CASE 1 and CASE 2, in which the experiment has been continuously performed under the same operating conditions. During the continuous operation, working temperature of carbonator was 75 to $80^{\circ}C$, that of regenerator was 190 to $200^{\circ}C$, and $CO_2$ inlet concentration of the feed gas was 12 to 14 vol%. Especially, to compare the dynamic sorption capacity of sorbents, the differential pressure of the mixing zone in the carbonator was maintained around 400 to 500 mm $H_2O$. Also, solid samples from the carbonator and the regenerator were collected and weight variation of those samples was evaluated by TGA. The $CO_2$ removal efficiency and the dynamic sorption capacity were 64.3% and 2.40 wt%, respectively for CASE 1 while they were 81.0% and 4.66 wt%, respectively for CASE 2. Also, the dynamic sorption capacity of the sorbent in CASE 1 and CASE 2 was 2.51 wt% and 4.89 wt%, respectively, based on the weight loss of the TGA measurement results. Therefore, It was concluded that there could be a difference in the performance characteristics of the same sorbents according to the structure and type of heat exchanger inserted in the carbonator under the same operating conditions.

Drying of Rough Rice by Solar Collectors (태양(太陽) 열(熱 )집열기(集熱機)를 이용(利用)한 벼의 건조(乾燥)에 관(關)한 연구(硏究))

  • Chang, Kyu-Seob;Kim, Man-Soo;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.264-272
    • /
    • 1979
  • The flat-plate and tubular soar collectors were designed and constructed for drying the rough rice, and the performance of the collectors and drying effect were investigated when rough rice was packed in grain bin connected to collectors. Average-monthly radiation on a horizontal surface based on bright sunshine in Daejeon area during 1978 was the highest as $16,814\;KJ/m^2{\cdot}day$ in May and the lowest as $4,254\;KJ/m^2{\cdot}day$ in December, and significane was not recognized between the calculated and recorded values. The thermal effciency of collectors were increased as radiation increased during drying period and the average thermal effciency of flat-plate and tubular collectors in 11 to 12 o'clock a.m were 28.12 and 16.75%, respectively. The average inlet temperature of grain bin at 12 o'clock was shown as 20.02 at control 40.5 at grain bin connected to tubular collector and $55.1^{\circ}C$ at grain bin connected to flat-plate collector. In 25 cm rough rice depth in grain bin, tim taken for drying from initial moisture content at 27.4 to decrease upto 17.0% (14.5 % on wet basis) were 32 in control, 18 in grain bin connected to tubular collector and 11 hrs to flat-plate collector, and grain depth influenced drying rate remarkably. In the view point of drying characteristics, drying pattern showed initially falling-rate to constant-rate period finally.

  • PDF

Development of a High Heat Load Test Facility KoHLT-1 for a Testing of Nuclear Fusion Reactor Components (핵융합로부품 시험을 위한 고열부하 시험시설 KoHLT-1 구축)

  • Bae, Young-Dug;Kim, Suk-Kwon;Lee, Dong-Won;Shin, Hee-Yun;Hong, Bong-Guen
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.318-330
    • /
    • 2009
  • A high heat flux test facility using a graphite heating panel was constructed and is presently in operation at Korea Atomic Energy Research Institute, which is called KoHLT-1. Its major purpose is to carry out a thermal cycle test to verify the integrity of a HIP (hot isostatic pressing) bonded Be mockups which were fabricated for developing HIP joining technology to bond different metals, i.e., Be-to-CuCrZr and CuCrZr-to-SS316L, for the ITER (International Thermonuclear Experimental Reactor) first wall. The KoHLT-1 consists of a graphite heating panel, a box-type test chamber with water-cooling jackets, an electrical DC power supply, a water-cooling system, an evacuation system, an He gas system, and some diagnostics, which are equipped in an authorized laboratory with a special ventilation system for the Be treatment. The graphite heater is placed between two mockups, and the gap distance between the heater and the mockup is adjusted to $2{\sim}3\;mm$. We designed and fabricated several graphite heating panels to have various heating areas depending on the tested mockups, and to have the electrical resistances of $0.2{\sim}0.5$ ohms during high temperature operation. The heater is connected to an electrical DC power supply of 100 V/400 A. The heat flux is easily controlled by the pre-programmed control system which consists of a personal computer and a multi function module. The heat fluxes on the two mockups are deduced from the flow rate and the coolant inlet/out temperatures by a calorimetric method. We have carried out the thermal cycle tests of various Be mockups, and the reliability of the KoHLT-1 for long time operation at a high heat flux was verified, and its broad applicability is promising.