• 제목/요약/키워드: Inlet Part

검색결과 275건 처리시간 0.031초

이론적 열유동 해석을 이용한 농산물 저장 및 유통 스마트 유닛로드 컨테이너의 통기공 최적화 설계 (Ventilation Hole Optimum Design of Smart Unit Load Container for Storage and Distribution Agricultural Products by Theoretical Heat Flow Analysis)

  • 최동수;김용훈;김진세;박천완;정현모;김기석;박종민
    • 한국포장학회지
    • /
    • 제28권3호
    • /
    • pp.211-215
    • /
    • 2022
  • Air distribution occupies an important position in the smart unit load container design process for agricultural products. Inner air may be uncomfortable because of its temperature, speed, direction, and volume flow rate. It doesn't matter how efficient the ventilation equipment is if the air is not distributed well. The main aim of this study was to design the inlet and outlet fan locations of smart unit load container for agricultural products. A numerical study was performed on the effects of the location of inlet air and outlet air in relation to the container cooling sources on air distribution and thermal comfort. A concept of combining inner container cooling sources with the exhaust outlet was employed in this investigation. Also, in this research, the developed CFD (Computational Fluid Dynamics) models were thoroughly validated. This system was adopted for use in container spaces, where the exhaust outlet was located. In this study, the location of the inlet was derived through CFD for a container with a size of 1,100×1,100×1,700 mm, and it was derived that the inlet was located at the center of the lower part of the container for efficient air flow. It was efficient to position the outlet through the air inlet in the center of the lower part of the container at the top of the same side.

Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel

  • Tong, L.L.;Hou, L.Q.;Cao, X.W.
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.93-102
    • /
    • 2021
  • The analysis of the fluid flow characteristics in reactor pressure vessel is an important part of the hydraulic design of nuclear power plant, which is related to the structure design of reactor internals, the flow distribution at core inlet and the safety of nuclear power plant. The flow distribution and mixing characteristics in the pressurized reactor vessel for the 1000MWe advanced pressurized water reactor is analyzed by using Computational Fluid Dynamics (CFD) method in this study. The geometry model of the full-scaled reactor vessel is built, which includes the cold and hot legs, downcomer, lower plenum, core, upper plenum, top plenum, and is verified with some parameters in DCD. Under normal condition, it is found that the flow skirt, core plate holes and outlet pipe cause pressure loss. The maximum and minimum flow coefficient is 1.028 and 0.961 respectively, and the standard deviation is 0.019. Compared with other reactor type, it shows relatively uniform of the flow distribution at the core inlet. The coolant mixing coefficient is investigated with adding additional variables, showing that mass transfer of coolant occurs near the interface. The coolant mainly distributes in the 90° area of the corresponding core inlet, and mixes at the interface with the coolant from the adjacent cold leg. 0.1% of corresponding coolant is still distributed at the inlet of the outer-ring components, indicating wide range of mixing coefficient distribution.

IGCC 합성가스 냉각기 상부의 열유동 및 입자거동 특성에 대한 전산해석 연구 (Numerical simulations on flow and particle behaviors in the upper part of a syngas cooler for IGCC)

  • 박상빈;예인수;류창국;김봉근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.147-148
    • /
    • 2012
  • The syngas produced from coal gasification is cooled down for gas cleaning by a syngas cooler that produces steam. Due to the presence of fly slag in the syngas, erosion, slagging and corrosion especially in the upper part of the syngas cooler may cause major operational problems. This study investigates the flow, heat transfer and particle behaviors in the syngas cooler of a 300MWe IGCC plant by using computational fluid dynamics. For various operational loads and geometry, the gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. In the evaporate channels inside the syngas cololr, the particle flows were concentrated more on the outer channel where slagging becomes more serious. The heat transfer to the wall was mainly by convection which was larger on the side wall below the inlet level.

  • PDF

송천 하구 사주의 지형 특성과 변화 과정 (Geomorphological Properties and Changes on River-Mouth Bar at Song-cheon River)

  • 이광률
    • 대한지리학회지
    • /
    • 제46권6호
    • /
    • pp.693-706
    • /
    • 2011
  • 본 연구는 경상북도 영덕군 동해안의 송천 하구 사주를 대상으로, 지형의 형태적 특성과 형성 시기를 파악하고, 장기적 및 단기적인 하구 사주의 변화 과정과 원인을 분석하였다. 사주의 해안선 부근 모래는 남에서 북으로 갈수록 입도가 점차 감소하여, 파랑과 연안류가 대체로 북쪽으로 이동하는 경향이 강한 것으로 보인다. 하구 사주와 인근 해안사구 모래의 절대연대는 약 100년 이내로서 지형의 변화가 매우 심하였다. 하구 사주 내의 입수구는 1971년부터 1995년까지 사주의 남쪽에 위치하였으나, 1995년부터 현재까지는 사주의 북쪽이나 중앙에 나타나고 있는데, 그 원인은 2000년 이후 바람과 해류의 북류 경향이 뚜렷해지면서 파랑과 연안류의 이동 방향이 변화된 결과로 판단된다. 단기적으로 볼 때, 주로 9월부터 3월 사이에 파랑과 바람의 작용으로 퇴적작용이 우세하여 사주의 고도가 상승하고 면적이 넓어지며 지형 기복이 단순해지고, 입수구의 위치와 사주의 형태 변화가 크게 나타났다.

풍력발전기의 블레이드에 대한 FSI 해석 (FSI analysis on wind turbine blade)

  • 김윤기;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2829-2832
    • /
    • 2007
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

100kW용 풍력발전기의 블레이드에 대한 유동/구조 연성해석 (Analysis of Fluid Structure Interaction on 100kW-HAWT-blade)

  • 김윤기;김경천
    • 한국가시화정보학회지
    • /
    • 제4권1호
    • /
    • pp.41-46
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

Air-twist 노즐 형상 설계의수치적 연구 (A COMPUTATIONAL APPROACH TO DESIGN THE GEOMETRY OF THE AIR-TWIST NOZZLE)

  • 쥬래바 막슈다;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.67-70
    • /
    • 2010
  • Spandex yarn requires a twisting process during winding and unwinding processes at the textile industry. The air-twist nozzle is widely used as part of the winding and unwinding. This paper describes computational approach to design the geometry of the air-twist nozzle. The nozzle has circular yarn-channel and the air-inlet which is perpendicularly connected to the yarn-channel with yarn-loading slit. The air-inlet of the nozzle is designed while measurements of the yarn-channel are fixed. The airflow inside the air-twist nozzle is simulated by using Computational Fluid Dynamic model. The Ansys CFX was used to perform steady simulations of the airflow for the air-twisting process. The vortical structure and the airflow pattern such as velocity streamline, vorticity, velocity of the air-twist nozzle are discussed. Computational results are compared with experimental results in this paper.

  • PDF

저수지내 침전지가 수질개선에 미치는 영향 (Effect of Sedimentation Pool within Irrigation Reservoirs on Water Quality Improvement)

  • 장정렬;박병흔;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.657-662
    • /
    • 1999
  • This study was conducted for the purpose of assessing the pollutant removal possibilities of sedimentation pool formed by deep dredging of a reservir inlet. Water quality data were collected in the Masan reservoir, whose inlet has been dredged deep like sedimentation pool. The average concentration of chemical oxygen demand(COD), total nitrogen(T-N) adnd total phosphorous(T-P) in the deep dredged area were 8.3∼28.4mg/$\ell$ (COD), 2.0∼6.0mg/$\ell$(T-N), 0.17∼1.34mg/$\ell$(T-P), which were 3.3% (COD) , 30.6%(T-N) and 46.4%(T-P) higher than those of middle part of the reservoir. From these results, it was considered the deep dredged area in the inlet of reservoir might play a key role to improve reservoir water quality.

  • PDF

OLED 박막 증착공정에서 유도로 내부의 분자유동 해석 (Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process)

  • 성재용;이응기
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.45-50
    • /
    • 2008
  • Molecular flows inside a guide block in the OLED(organic luminescent emitting device) deposition process have been simulated using DSMC(direct simulation Monte Carlo) method. Because the organic materials are evaporated under vacuum, molecules flow at a high Knudsen number of the free molecular regime, where the continuum mechanics is not valid. A guide block is designed as a part of the linear cell source to transport the evaporated materials to a deposition chamber, When solving the flows, the inlet boundary condition is proved to affect significantly the whole flow pattern. Thus, it is proposed that the pressure should be specified at the inlet. From the analysis of the density distributions at the nozzle exit of the guide block, it is shown that the longer nozzle can emit molecules more straightly. Finally, a nondimensionalized mass flow profile is obtained by numerical experiments, where various nozzle widths and inlet pressures are tested.

유동-구조 연성해석 기법을 이용한 풍력발전시스템 해석 (Analysis of Wind Turbine system using Fluid Structure Diteraction)

  • 김윤기;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF