• Title/Summary/Keyword: Inlet Flow Resistance

Search Result 73, Processing Time 0.02 seconds

Effect of Inlet Geometries on the Two-Phase Flow Distribution at Header-Channel Junction (헤더-채널 분기관에서의 헤더 입구 형상이 2상 유동 분배에 미치는 영향에 대한 실험적 연구)

  • Lee, Jun Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.324-330
    • /
    • 2013
  • The main objective of this work is to experimentally investigate the effect of inlet geometries on the distribution of two-phase annular flow at header-channel junctions simulating the corresponding parts of compact heat exchangers. The cross-section of the header and the channels were fixed to $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Experiments were performed for the mass flux and the mass quality ranges of $30{\sim}140kg/m^2s$ and 0.3~0.7, respectively. Air and water were used as the test fluids. Three different inlet geometries of the header were tested:no restriction (case A), a single 8 mm hole at the center (case B), and nine 2 mm holes around the center (case C) at the inlet, respectively. The tendencies of the two-phase flow distribution were different, in each case. For cases B and C (flow resistance exists), more uniform flow distribution results were seen, compared with case A(no flow resistance), due to the flow pattern change to mist flow from annular flow at the inlet, and the flow recirculation near the end plate of the header.

A Study on the Flow and Cooling Characteristics with the Inlet Blockage of a Fan-Sink (홴싱크의 입구 봉쇄에 따른 유동 및 냉각 특성에 관한 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Yun, Jae-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.83-88
    • /
    • 2004
  • In this study, the flow and thermal performance of the heat sink and fan-sink were experimentally studied to predict the operating condition of the fan-sink. The experiments of the flow and thermal resistance of the heat sink with various inlet blockage, which were occurred by the shapes of the axial fans, were conducted for the proof of the effects of the inlet blockages. The greater the inlet blockage of the heat sink, the higher the pressure drop and lower the thermal resistance of the heat sink will be. The operating point of the fan-sink was predicted by the pressure drop curve with the inlet blockage, which was corresponded to the selected fan and the fan performance curve, and verified by the performance test of the fan-sink. The predicted operating point of the fan-sink had good agreement with the result of the performance test of the fan-sink within $0.7\%$ of the volume flow rates. Measured thermal resistance of the fan-sink was equivalent to that of the heat sink with the same inlet blockage of the fan-sink. It was shown that the heat transfer characteristics of the heat sink were influenced by the flow interaction between the selected fan and the heat sink. To improve the thermal resistance of the heat sink, it is necessary to consider appropriate flow patterns of the fan outlet entering into the heat sink.

  • PDF

Numerical Simulation of Flows Inside Scroll Casing with Rotating Impeller (회전하는 임펠러를 포함한 스크롤 케이싱 내부 유동장의 전산 해석)

  • Kim J W.;Ahn E. Y.;Park J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.65-68
    • /
    • 2004
  • The design procedure for centrifugal blower with high inlet resistance is not presented yet. Overall fluid dynamic performance is estimated for comparison between the case of atmospheric inlet condition and the present model. Detail information between blades is prepared by using a commercial program, SCRYU-Tetra. A centrifugal blower with large inlet pressure is adopted in an air purifier having filtering devices. As the inlet residence increases the flow rate of the system is decreased. In parallel, outlet area of the system affects the performance of the system in the sense of flow balance. Consequently, the flow balance between the inlet and outlet becomes an important parameter for the design of the scroll casing for the centrifugal blower with high inlet pressure.

  • PDF

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

Flow Analysis on the Outside of Automotive Body (차체 외부에서의 유동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • The air resistance about automotive body is studied by the flow analysis in this study. Maximum air flow velocity is shown with 28 to 30 m/s on the upper roof of automotive body. The air flow becomes most regular at automotive body model 3 but the model of 2 or 3 becomes irregular in comparison with the model 1. The maximum air resistance pressure is shown with 413 to 420 Pa at the front bumper of automotive body. The flow velocity at inlet or middle plane of automotive body is shown as the contour same with the model of 1, 2, or 3. But the velocity at outlet plane at model 1 is shown as the contour different with the model of 2 or 3.

Analysis of Flow Resistance in Microchannels at Slip-Flow Regime by Direct Simulation Monte Carlo Method (DSMC를 이용한 미끄럼흐름영역에서 미소채널의 유동저항 해석)

  • Sung Jaeyong;Ahn Youngkyoo;Lee Sukjong;Lee Myeong Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.1-7
    • /
    • 2006
  • The characteristics of micro gaseous flows in microchannels have been analyzed in view of flow resistance using the direct simulation Monte Carlo (DSMC) method which is a molecule-based numerical modeling technique. For this purpose, a DSMC code where the pressure boundary condition was specified at the inlet and outlet, has been developed and the results of simulations showed satisfactory agreements with the analytic solution in the slip flow regime. (0.01 < Kn < 0.1) By varying the height and length of the microchannel, the effect of pressure difference between the inlet and outlet was examined. The present computation indicates that the curvature in pressure distribution along the channel increases due to the effect of compressibility when the pressure difference increases. To obtain the flow resistance regardless of the channel dimensions, a standard curve is devised in the present study by introducing the concept of unit mass flowrate and unit driving pressure force. From this curve, it is shown that in micro flows, a significant deviation from the laminar incompressible flow occurs by reducing the flow resistance.

Characteristics of Performance for Centrifugal Blower with Different Outlet Geometries (토출구의 형상에 따른 원심 송풍기의 성능특성)

  • Kim, Jae-Won;Kim, Jin-Min;Lee, Kook-Do
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.70-77
    • /
    • 2004
  • Comprehensive investigation on the outlet's geometric shapes of a centrifugal blower with higher inlet resistance than an atmospheric pressure is carried out for improvements of its performance. Most unwanted behaviors of such blower are pulsating flows because of unbalance between inflows and outflows in a scroll casing. In order to reduce this undesirable phenomenon a triump is made for both the shape of outlet duct and an accessory structure inserted in the outlet port of the blower. The modification on the shape is concerned with the contraction of cross sectional area and the attached structure is for an intentional obstruction to cause a flow resistance. The details of the modification are examined for different cases and results. The methodologies for the work are performance evaluations including noise level and velocity measurements with PIV Consequently, the performance of improved system is close to that of the system operating with atmospheric pressure at the inlet.

  • PDF

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

Flow and heat transfer analysis for the performance improvement of cross-flow fin-tube heat exchangers (에어컨 실외기용 휜-관 직교형 열교환기의 열, 유동 해석 및 휜 성능 개선을 위한 연구)

  • An C. S.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.183-189
    • /
    • 2004
  • The flow and the heat transfer about the cross-flow fin-tube heat exchanger in an out-door unit of a heat pump system has been numerically Investigated. Using the general purpose analysis code, FLUENT, the Navier-Stokes equations and the energy equation are solved for the three dimensional computation domain that encompasses multiple rows of the fin-tube. The temperature on the fin and tube surface is assumed constant but compensated later through the fin efficiency when predicting the heat-transfer rate. The contact resistance is also taken into consideration. The flow and temperature fields for a wide range of inlet velocity and fin-tube arrangements are examined and the results are presented in the paper. The details of the flow are very well captured and the heat transfer rate for a range of inlet velocity is in excellent agreement with the measured data. The flow solution provides the effective permeability and the inertial resistance factor of the heat exchanger if the exchanger were to be approximated by the porous medium. This information is essential in carrying out the global flow field calculation which, in turn, provides the inlet velocity lot the microscopic temperature-field calculation of the heat exchanger unit.

  • PDF

A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves (압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기)

  • Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.