• 제목/요약/키워드: Inlet Flow Angle

검색결과 267건 처리시간 0.028초

맥동압력조건에서 재생기를 통한 왕복유동의 압력강하 특성에 대한 연구 (Investigation on the pressure drop characteristics of oscillating flow through regenerators under pulsating pressure conditions)

  • 최성열;남관우;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.51-57
    • /
    • 2003
  • This paper proposes a new oscillating flow model of the pressure drop through the regenerator under pulsating pressure. In this oscillating flow model. pressure drop is expressed by the amplitude and the phase angle with respect to the inlet mass flow rate. In order to generalize the oscillating flow model. non-dimensional parameters, which are Reynolds number, Valensi number, gas domain length ratio, oscillating flow friction factor and phase angle of pressure drop, are derived from the capillary tube model of the regenerator. Correlations for the oscillating flow friction factor and the phase angle are obtained from the experiments for the twill-square screen regenerators under various operating frequencies and inlet mass flow rates. The oscillating friction factor is a function of the Reynolds number alone and the phase angle of pressure drop is a function of the Valensi number and the gas domain length ratio. Experiment is also performed to examine the effect of the weave style of screen. Experimental data demonstrate the superiority of the oscillating flow model over the previous steady flow model.

PIV측정을 통한 램제트 연소기의 유입각과 돔 크기에 따른 선회 유동 특성 (Recirculation Characteristics by the Inlet Angle and Dome Size of a Liquid Ramjet Combustor using PIV Method)

  • 김규남;이충원;손창현
    • 한국추진공학회지
    • /
    • 제11권1호
    • /
    • pp.51-56
    • /
    • 2007
  • PIV 방법을 이용하여 액체 램제트 연소실 내부의 유동 특성을 측정하였다. 연소기는 2개의 사각 단면의 유입구가 90도의 각도를 가지고 있으며, 유입각이 $30^{\circ},\;45^{\circ},\;60^{\circ}$의 3가지 경우를 연소실 실험 모형으로 제작하였다. 실험은 유입구에서의 속도가 마하 0.3의 경우로 레이놀즈 상사를 적용하여 수조에서 실험을 수행하였다. PIV 프로그램은 자체 개발하였다. 4가지의 돔 크기에 대하여 돔에서 생성되는 복잡한 1차 재순환 유동을 측정하였다. 실험한 범위에서 돔의 크기는 연소실 직경의 1/3정도가 적당한 것으로 판단되며 유입각은 작을수록 재순환 영역이 커짐을 알 수 있으나 최적의 연소기 형상은 2차 재순환 영역과 함께 고려되어야 한다.

2차 공기 주입각이 소각로 내부의 온도 분포 균일도에 미치는 영향 (Effects of the angle of secondary air inlet on the uniformity of temperature distribution inside an incinerator)

  • 김성준;민인홍;박명호;박민주
    • 한국전산유체공학회지
    • /
    • 제5권3호
    • /
    • pp.8-15
    • /
    • 2000
  • This research is aimed to find out how the inlet angle of secondary air affects the uniformity of temperature distribution inside a small incinerator. A commercial code, PHOENICS, is used to simulate the thermal-flow field of an incinerator. The computational grid system is constructed by Multi-Block technique provided by PHOENICS. Numerical experiments are done with the five different angles of secondary air inlet. The uniformity of temperature distribution is evaluated by checking the standard deviation of temperature distribution in an incinerator. The computational results show that there is the minimum value of standard deviation at the certain angle of secondary air inlet, which means that there is an optimum angle of secondary air inlet that could improve the uniformity of temperature distribution in an incinerator. The optimum angle of secondary air inlet is between 30 degree and 45 degree in this particular case.

  • PDF

흡입 밸브 각도에 따른 압축 행정 중 실린더 내 유동 특성 (In-Cylinder Compression Flow Characteristics According to Inlet Valve Angle)

  • 엄인용;박찬준
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.77-83
    • /
    • 2006
  • A PIV(Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during compression stroke. Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare real compression flow. The results show that the flow patterns are well arranged compared with intake flow and the basic tumble flow structures are maintained until end compression stage regardless of valve angle. Also the results show that the tumble motion is intensified by momentum conservation during compression in normal engine. In the normal engine, the bulk shape of flow pattern is "Y" type at the top of cylinder and reverse "Y" type at the bottom of cylinder and weak reverse flow exists at the top of cylinder along cylinder center line. Otherwise, the other engine's flow pattern changes from "Y" type to "T" type at the top of cylinder during compression.

수치해석을 이용한 오물 처리용 진공펌프의 성능평가 (A Numerical Study on the Performance Evaluation of the Vacuum Pump for Waste Treatment)

  • 이힘찬;김준형;윤준용;김창조;최영석
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.53-58
    • /
    • 2014
  • Vacuum pump transfers waste that is pulverized by integrated macerator. For this reason, unlike ordinary pump systems, there is a rotating macerator ahead of impeller for pulverizing. It is hard to predict numerical solution because area of Inlet flow path changes according to the rotation angle of the integrated macerator. So, in this study, the verification of performance evaluation method of Marine vacuum pump were numerically studied by commercial ANSYS CFX 13.0 software. We select a model of performance evaluation for study, and we analyze change of inlet flow path of integrated macerator according to rotation angle. We generate 5 model sets according to rotation angle of the integrated macerator. And we evaluate their performance by numerical analysis. Then, we analyze internal flow field and performance according to rotation angle of the integrated macerator based on numerical analysis result. In addition, we compared with experimental data for validity of numerical result by using steady state analysis.

흡입 밸브 각도에 따른 실린더 내 흡입 유동 특성 비교 (In-Cylinder Intake Flow Characteristics according to Inlet Valve Angle)

  • 엄인용;박찬준
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.142-149
    • /
    • 2006
  • A PIV(Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare real intake flow. The results show that the intake flow pattern of conventional engine is more complicated than that of narrow angle one in horizontal plane and the vertical component of in-cylinder flow is rapidly decayed at the end stage of intake. On the other hand, the flow pattern of narrow angle one is relatively well arranged in horizontal plane and the vertical velocity component remains so strongly that forms large-scale strong tumble. Two engines also form commonly three tumble; two are small and bellow the intake valve and one is large-scale. The center of large scale tumble moves to bottom of cylinder as the vertical velocity increases.

액체 램젯트 엔진 연소기내의 이차유동 특성 (Flow Characteristics of Secondary Recirculation Region in a Liquid Ramjet Combustor)

  • C. H. Sohn;J. S. Hong;S. Y. Moon;C. W. Lee
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.137-140
    • /
    • 2003
  • The flow characteristics of secondary recirculation region in a liquid fuel ramjet combustor are measured using PIV method. The model combustor has two rectangular inlets that form 90 degree angle each other. The tested angles of the air intakes were 30, 45 and 60. Three guide vanes are installed in each rectangular inlet to improve the flow stability. The experiments are performed in the water tunnel test with the same Reynolds number as the case of Mach 0.3 at the inlet. PIV software is developed to measure the characteristics of the flow field in the combustor. The accuracy of the developed PIV program is verified with rotating disk experiment and standard data. The experimental results show that the secondary recirculation flow occurred at the front junction of inlet main stream and combustorchamber. The size of secondary recirculation regions are increased with increasing air inlet angles. Since the performanceof combustor is very dependant on not only the main recirculation in the dome region but also the secondary recirculation flow in a junction region, the optimal angle of the air intakes should consider the both recirculation size as a frame holder.

  • PDF

양흡입 원심블로어 성능향상을 위한 입구 유동 최적화 연구 (Evaluation of Inflow Uniformity on the Performance of Double-Inlet Centrifugal Blower Using Optimal Design Method)

  • 이종성;장춘만;전현준
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.326-333
    • /
    • 2013
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an inlet duct. Two design variables, a length of anti circulation vane and an angles of inlet guide, are introduced to improve the inlet flow uniformity leading to the blower performance. Three-dimensional Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. From the shape optimization of the inlet duct of the double-inlet centrifugal blower, the optimal positions of each design variable are determined. Throughout the analysis of sensitivity, it is found that the angle of the inlet guide is more effective than the length of the anti-circulation vane to increase flow uniformity at the outlet of the duct. Efficiency and pressure for the optimal inlet duct shape are successfully increased up to 3.55% and 3.2% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

Effects of Angles of Attack and Throttling Conditions on Supersonic Inlet Buzz

  • NamKoung, Hyuck-Joon;Hong, Woo-Ram;Kim, Jung-Min;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.296-306
    • /
    • 2012
  • A series of numerical simulations are carried out to analyze a supersonic inlet buzz, which is an unsteady pressure oscillation phenomenon around a supersonic inlet. A simple but efficient geometry, experimentally adopted by Nagashima, is chosen for the analysis of unsteady flow physics. Among the two sets of simulations considered in this study, the effects of various throttling conditions are firstly examined. It is seen that the major physical characteristic of the inlet buzz can be obtained by inviscid computations only and the computed flow patterns inside and around the inlet are qualitatively consistent with the experimental observations. The dominant frequency of the inlet buzz increases as throttle area decreases, and the computed frequency is approximately 60Hz or 15% lower than the experimental data, but interestingly, this gap is constant for all the test cases and shock structures are similar. Secondly, inviscid calculations are performed to examine the effect regarding angle of attack. It is found that patterns of pressure oscillation histories and distortion due to asymmetric (or three-dimensional) shock structures are substantially affected by angle of attack. The dominant frequency of the inlet buzz, however, does not change noticeably even in regards to a wide range of angle of attacks.

축류 송풍기 허브측 불균일 유입유동 현상 및 성능 특성 (Performance Characteristics Due to the Inflow Distortion near Hub in an Axial Flow Fan)

  • 장춘만;최승만;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.663-669
    • /
    • 2005
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, round shape and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depends on the distance between hub-cap and blade leading edge. Flow analysis of the blade passage is peformed by solving the three-dimensional Reynolds-averaged Navier-Stokes equations. numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flowangle. The changed inlet flow angle near the hub invokesa flow separation on the blade surfaces, thus deteriorating the fan efficiency. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  • PDF