• Title/Summary/Keyword: Inkjet Printing Method

Search Result 76, Processing Time 0.028 seconds

The role of functional materials and inkjet printing technology for printable electronics (프린팅 전자소자용 잉크젯 기술과 소재)

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.446-450
    • /
    • 2007
  • It is strongly expected that inkjet printing method will be play and important role on printable electronics such as 3D integration of embedded ceramic devices(capacitor, resistor, inductor and electrode or circuit), Si-TFT and organic TFT including display C/F, RFID, FPCB, and etc. A inkjet printing method had been center of attention to strengthen the competitiveness of flat panel display on market and to open the new world of manufacturing process of printable electronics. We will survey the industrial tendency of printable electronics and flat panel display including some examples of inkjet printing and present the considerable points of inkjet printing method and some role of materials for successful inkjet printing.

  • PDF

Printing Technology for Bulk-Heterojunction Organic Photovoltaic Cells: Inkjet and Aerosol-Jet Printing

  • Yun, Seong-Cheol;Jeong, Jae-Uk;Kim, Dong-Hwan;Im, Jong-Seon;Lee, Chang-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.11.1-11.1
    • /
    • 2009
  • Bulk-heterojunction type organic photovoltaic cells have been remarkably improved due to the development of efficient donors and post treatment process. However, most of researchers have studied on the OPVs using spin-coating method during the past decade. To commercialize the OPVs, much cheaper printing process should be developed such as inkjet, screen, gravure, and so on. In this study, we have focused on the development of printing technology using Inkjet and Aerosol-Jet printing, which can offer reliable device performance. Finally, 4.5% power conversion efficiency can be achieved under AM 1.5 1sun light illumination, which is the highest value in printed OPVs. We reveal that substantial improvement can be realized by highly efficient bulk heterojunction after printing. Also, we can confirm these two printing methods are promising fabrication methods for large area OPVs. Also, flexible and large area (18 cm2) printed OPVs have been fabricated and device performance will be discussed in detail.

  • PDF

Inkjet Printing of Single Walled Carbon Nanotubes

  • Song, Jin-Wong;Han, Chang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.79-81
    • /
    • 2008
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as $34{\mu}m$. In this repeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about ${\pm}5%$ deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

Liquid crystal alignment on the inkjet printed polyimide by using new alignment method

  • Hwang, J.Y.;Wonderly, H.;Chien, L.C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.506-508
    • /
    • 2007
  • We studied the nematic liquid crystal (NLC) alignment capability with a new alignment method utilizing an inkjet printed polyimide (PI) layer. A good, uniform LC alignment was achieved by the good PI printing using a new alignment method. The pretilt angle generated on the printed PI layer using the alignment method was almost the same as that on printed PI layer using rubbing alignment method. In addition, the good electro-optical performances of the new aligned twisted nematic (TN) cell with printed PI surface was obtained

  • PDF

Piezo-driven inkjet printhead monitoring system (압전 잉크젯 헤드 모니터링 시스템)

  • Lee, Byeung-Leul;Kim, Sang-Il
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.124-129
    • /
    • 2010
  • For the industrial printing applications, the stability of the piezo-driven inkjet printhead is a major requirement. In this paper, we focused on the failure modes of the inkjet printhead and realized a method to detect and repair them at high speed. The printhead monitoring is performed by detecting the residual vibration of the actuating plate using the self- sensing capability of the piezoelectric material. To measure the channel acoustics and to identify the malfunctioning nozzle, we devised the bridge sensing circuitry and failure detection algorithm. The residual vibration signals can be affected by the boundary conditions of the channel acoustics, so it is possible to identify the failure causes by analyzing the monitoring signals. Therefore it is also possible to apply a proper restoring process to the defective printhead. The experimental results show that this method is effective in improving the reliability of the industrial printing.

Fabrication of Ceramic 3D Integration Technology for Ink-jet Printing (Ink-jet Printing을 이용한 3D-Integration 구현)

  • Hwang, Myung-Sung;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.332-332
    • /
    • 2010
  • We have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films withouWe have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films without a high temperature sintering process. In order to remove the coffee ring effect in the ink drop, we have introduced a co-solvent system in order to create Marangoni flow in the ink drop, which leads to the dense packing of ceramic powders on the substrate during inkjet process. The packing density of the Inkjet-printed $Al_2O_3$ films is around 60% (max. 70%) which is very high compared to the value obtained from the same material films by other conventional methods such as film casting, dip coating process, etc. The voids inside the films (which are around 40% of the entire film volume) are filled with the polymer resin (Cyanate ester) by the infiltration process. This resin infiltration is also implemented by the inkjet printing process right after the Ah03 film ink-jetting process. The microstructures of the printed $Al_2O_3$ films are investigated by Scanning Electron Microscope (SEM) to understand the degree of packing density in the printed films. The inkjet-printed $Al_2O_3$ films have been characterized to investigate its thickness and roughness. Quality factor of the printed $Al_2O_3$ film is also measured to be over 300 at 1MHz.

  • PDF

Theoretical analysis of one possible cause of the droplet volume variation for the fabrication of a TFT LCD color filter with the piezo DOD inkjet printing technology (잉크젯을 이용한 TFT LCD 컬러필터 제작에 있어 잉크액적 부피 편차에 대한 이론적 해석)

  • Shin, Dong-Youn;Lee, Taik-Min;Kim, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2563-2566
    • /
    • 2007
  • TFT LCD industries have endeavored to adopt the piezo Drop-On-Demand (DOD) inkjet printing technology to production lines of TFT LCD color filters and these efforts have significantly been based on experimental works. Because the degree of complexity in the piezo DOD inkjet printing technology results in too many combination of parameters, the matrix experimental method to investigate all possible sets of parameters becomes ineffective and hence the basic understanding of the piezo Drop-On-Demand inkjet print technology becomes important. In this study, one possible cause of the droplet volume variation across nozzles, which might cause visible swathe marks on an inkjet patterned TFT LCD color filter, is theoretically investiaged and new R&D directions are suggested.

  • PDF

Inkjet Printing of Single Wall Carbon Nanotubes for Transparent Conductive Films

  • Song, Jin-Won;Yoon, Yeo-Hwan;Kim, Joon-Dong;Lee, Eung-Sug;Choi, Byung-Sam;Kim, Jae-Ho;Han, Chang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1257-1260
    • /
    • 2007
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as $34\;{\mu}m$. In this repeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about ${\pm}\;5%$ deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

  • PDF

Process Improvement of PCB Electric Circuit Pattern by Ink Drop Jetting Control and Characteristics Analysis of Industrial Inkjet Piezoelectric Print Head (산업용 잉크젯 압전프린트 헤드의 특성해석 및 잉크 망점제어에 의한 PCB 전기회로패턴 공정개선)

  • Youn, Shin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • This paper was analyzed the characteristics of piezoelectric inkjet print head using finite element method(FEM). It showed the bending node driving of piezoelectric and relation theory principle consider piezoelectric material characteristics and ink characteristics. From such result we were had the piezoelectric head design and manufacture. It got a this head characteristics through experiment, we confirmed that proper voltage control is possible to through ink drop control experiment of piezoelectric print head. This paper was obtained the suitable ink jetting characteristics that manufacture the control circuit and piezoelectric inkjet print head. This practice product was applied to improvement of PCB electric circuit pattern by etching resist ink that PCB manufactured to complex process over traditional 6 stages can be simpled to 1 stage by inkjet printing technology.

A Quantitative Self Alignment Method in Incremental Printing: Coalescent Bar Alignment

  • Chun, Y.;Kim, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.106-109
    • /
    • 2003
  • The repeatability error creeps in every corner of mechanical design as mechanical design becomes diverse and complicated. Inkjet printing has inherent repeatability error problem due to its nature of seamless incremental image synthesis of partial images. Without the calibration for the repeatability error realization of high print quality or enhancement of other printing performance could be impaired. Printer designers have met this recurrent problem even before the inception of inkjet print device and contrived various solutions as their own intelectual proprietary. Also, it is a trend to perform necessary calibration without painstaking human intervention. To come up with another useful and proprietary solution has become an important ingredient in inkjet printer design. This paper presents such a solution developed at Digital Printing Division of Samsung Electronics Company.

  • PDF