• 제목/요약/키워드: Injured cell

검색결과 199건 처리시간 0.032초

Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes

  • Park, Misun;Yoon, Young-sup
    • Korean Circulation Journal
    • /
    • 제48권11호
    • /
    • pp.974-988
    • /
    • 2018
  • Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are collectively called pluripotent stem cells (PSCs), have emerged as a promising source for regenerative medicine. Particularly, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown robust potential for regenerating injured heart. Over the past two decades, protocols to differentiate hPSCs into CMs at high efficiency have been developed, opening the door for clinical application. Studies further demonstrated therapeutic effects of hPSC-CMs in small and large animal models and the underlying mechanisms of cardiac repair. However, gaps remain in explanations of the therapeutic effects of engrafted hPSC-CMs. In addition, bioengineering technologies improved survival and therapeutic effects of hPSC-CMs in vivo. While most of the original concerns associated with the use of hPSCs have been addressed, several issues remain to be resolved such as immaturity of transplanted cells, lack of electrical integration leading to arrhythmogenic risk, and tumorigenicity. Cell therapy with hPSC-CMs has shown great potential for biological therapy of injured heart; however, more studies are needed to ensure the therapeutic effects, underlying mechanisms, and safety, before this technology can be applied clinically.

Facilitated Axonal Regeneration of Injured Sciatic Nerves by Yukmijihwang-tang Treatment

  • Kim, Jung-Hyun;Seol, In-Chan;Ryu, Ho-Ryong;Jo, Hyun-Kyung;An, Joung-Jo;Namgung, Uk;Kim, Yoon-Sik
    • 동의생리병리학회지
    • /
    • 제22권4호
    • /
    • pp.896-902
    • /
    • 2008
  • Yukmijihwang-tang(YM) is used in Oriental medicine for treatments of diverse systemic symptoms including neurological dosorders. The present study was performed to examine potential effects of YM on growth-promoting activity of injured sciatic nerve axons. YM treatment in the injured sciatic nerve induced enhanced distal elongation of injured axons when measured 3 and 7 days after injury. Retrograde tracing of sciatic nerve axons showed YM-mediated increases in the number of DiI-labeled dorsal root ganglion (DRG) sensory neurons and spinal cord motor neurons at 3 days after injury. Hoechst nuclear staining showed that non-neuronal cell population was largely elevated by YM treatment in distal nerve area undergoing axonal regeneration. Furthermore, phospho-Erk1/2 protein levels were upregulated by YM treatment in the injured nerve area. These data suggest that YM may play a role in facilitated axonal regeneration in injured peripheral nerves. Further investigations of individual herbal components would be useful to explore effective molecular components and develop therapeutic strategies.

금은화에서 분리한 Caffeic Acid의 신경세포보호 활성 (Neuroprotective Activity of Caffeic Acid Isolated from Lonicera japonica)

  • 손예림;마충제
    • 생약학회지
    • /
    • 제51권1호
    • /
    • pp.30-35
    • /
    • 2020
  • We previously reported that caffeic acid isolated from Lonicera japonica showed potent neuroprotective activities against glutamate injured neuronal cell death in primary cortical cells. In this study, we tried to confirm the neuroprotective activity in glutamate injured HT22 cells and elucidate mechanisms of neuroprotective action of caffeic acid. We used glutamate induced HT22 cell death as a bioassay system. The compound decreased reactive oxygen species increased by high concentration of glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by this compound. This compound made mitochondrial membrane potential maintain to normal condition. This also affected anti-oxidative enzymes and glutathione contents. Treatment of this compound increased not only glutathione reductase and peroxidase to the control level and also amount of glutathione, an endogeneous antioxidant. These experimental results showed that caffeic acid isolated from L. japonica exerted potent neuroprotective activity through the anti-oxidative pathway.

금전초에서 분리한 cynaroside의 신경세포보호 활성 (Neuroprotective Activity of Cynaroside Isolated from Lysimachia christinae)

  • 류가희;마충제
    • 생약학회지
    • /
    • 제54권1호
    • /
    • pp.9-15
    • /
    • 2023
  • In the previous study, we reported that cynaroside isolated from Lysimachia christinae methanolic extract had potent neuroprotective activities in neuronal cell death injured by excessive glutamate. In this study, we tried to confirm the neuroprotective activities of cynaroside in glutamate injured HT22 cells and establish mechanisms of neuroprotective action of cynaroside. We employed HT22 cells damaged by glutamate-induced cell death as a bioassay system. Cynaroside decreased reactive oxygen species increased by excessive glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by cynaroside treatment. Cynaroside restored mitochondrial membrane potential to normal condition. It also increased not only glutathione reductase but also peroxidase to the control level. And it increased amount of glutathione, an endogenous antioxidant. These results suggested that cynaroside isolated from L. christinae showed potent neuroprotective activity through the anti-oxidative pathway.

Effects of Warming Acupuncture on Ligament Recovery in Injury-induced Rats

  • Heo, Dong-Seok;Geum, Dong-Ho
    • 대한한의학회지
    • /
    • 제27권4호
    • /
    • pp.156-161
    • /
    • 2006
  • Object : Warming acupuncture (WA) has been used in Oriental Medicine for the treatment of physical disabilities caused by ligament damage. Here, the effects of WA on injured ligament tissues were investigated using the rat model. Methods : The rats were induced injury on the right hind ankle, and 4 weeks later, WA was given onto the acupoint GB4O(Quixu) of the injury area on a weekly basis for 6 weeks. Main outcome was measured by levels of Erk1/2. Hoechst nuclear staining and collagen staining in the ligament tissue. Result : Levels of active form of Erk1/2 kinase were increased in the injured ligament with WA compared with the control ligament induced injury only, and this change correlated with cell number increases in the ligament by WA. Type III, but not type I, collagen mRNA and protein levels were elevated in the injured ligament treated with WA. Moreover, histological staining showed increased re-organization of collagen fibers in the ligament by WA. Conclusions : The present data suggest that WA performance to the injured ligament may facilitate the healing process via increasing cellular activity.

  • PDF

당귀가 rat의 손상된 좌골신경 재생에 미치는 영향 (Improved Axonal Regeneration Responses in the Injured Sciatic Nerve of Rats by Danggui Treatment)

  • 홍순성;오민석
    • 대한한의학회지
    • /
    • 제29권2호
    • /
    • pp.133-150
    • /
    • 2008
  • Objective: This study was performed to examine Danggui (DG, Angelica gigas Nakai)'s potential activity for promoting axonal regeneration in the injured peripheral nerve. Methods: Using the sciatic nerve in the rats, DG extract 5 ${\mu}l$(10 mg/ml in 0.5% saline) was dripped into the injury site of the nerve. Results: DG treatment facilitated axonal elongation responses in the distal portion to the injury site. GAP-43 protein levels were upregulated by DG treatment in the injured nerve and also in the DRG, suggesting the induction of GAP-43 expression at gene expression level after nerve injury. Phospho-Erk1/2 protein levels were upregulated in the injured nerve area and also in the DRG, suggesting retrograde transport of phospho-Erk1/2 protein from the injury area to the cell body. Cdc2 protein levels were slightly upregulated by DG treatment. DG treatment increased the number of non-neuronal cells in the distal portion to the injury site. Conclusions: The present data suggest that DG is effective for enhanced axonal regrowth after sciatic nerve injury.

  • PDF

사물탕(四物湯)이 혈관내피세포(血管內皮細胞)에 미치는 영향(影響) (Effects of Samul-Tang Extract on Vascular Endothelial Cells from Hydrogen Peroxide-induced Injury)

  • 남창규;김영균;문병순
    • 대한한방내과학회지
    • /
    • 제20권1호
    • /
    • pp.83-98
    • /
    • 1999
  • This study is designed to investigate the effects of Samul-Tang extract on the response of lactic dehydrogenase(LDH) release, cellular activity, lipid peroxidation, DNA synthesis and the changes of total protein of bovine pulmonary artery endothelial cells(PAEC) from hydrogen peroxide$(H_2O_2)$-induced injury. The results are as follows : 1. Samul-Tang significantly decreased $H_2O_2$-induced release of LDH from injured bovine PAEC. 2. Samul-Tang significantly repressed $H_2O_2$-induced cellular activity from injured bovine PAEC. 3. Samul-Tang significantly repressed $H_2O_2$-induced lipid peroxidation from injured bovine PAEC. 4. Samul-Tang significantly stimulated DNA synthesis in bovine PAEC. 5. Samul-Tang significantly repressed $H_2O_2$-induced changes of total protein volume from injured bovine PAEC. Above results suggest that Samul-Tang can protect bovine PAEC from $H_2O_2$-induced injury. These results can be effectively applied to the prevention and cure of cardiovascular and cerebrovascular diseases.

  • PDF

Staphylococcus aureus 의 sublethal heating 후 NaCl 농도에 따른 회복 정도 비교 (Comparison of Recovery Levels of Staphylococcus aureus Treated at Different NaCl Concentrations after Sublethal Heating)

  • 박경식;김민주;정혜진;김근성
    • 한국식품위생안전성학회지
    • /
    • 제24권4호
    • /
    • pp.368-372
    • /
    • 2009
  • 본 연구에서는 우리나라에서 2-3번째로 자주 발생하는 식중독 원인균인 S. aureus를 대상으로 불충분한 열처리와 NaCl처리에 따른 각각의 생존균수 변화와 불충분한 열처리 후 다양한 NaCl농도(0%, 2%, 4%, 6%)하에서 sublethal injured cell의 회복 정도를 조사하였다. 그 결과, 불충분한 열처리 정도가 증가함에 따라 생존균수가 유의적인 감소를 하였으나, NaCl 처리시 NaCl 농도가 6%까지 증가함에 따라서 생존균수의 변화가 거의 없었다. 그리고 $55^{\circ}C$$60^{\circ}C$에서 30분간 열처리하는 기간 동안에 sublethal injured cell들이 발생하였으며, 그들의 회복 정도는 높은 염농도에 노출될수록 회복 정도가 감소하였다. 또한 이와 같은 현상은 같은 온도에서 열처리 시간이 증가할수록 더욱 명확히 나타났다. 그리고 동일한 온도에서 sublethal heating 후 노출된 NaCl 농도가 증가함에 따라서 D-value가 감소하는 경향을 나타내었다. 이와 같은 결과는 불충분한 열처리 과정에 의하여 생성된 sublethal injured cell들이 열처리 후 회복되는 과정에서 배지의 NaCl 농도가 증가함에 따라서 회복 정도가 감소하였음을 의미한다.

Rabbit Model for in vivo Study of Intervertebral Disc Degeneration and Regeneration

  • Kong, Min-Ho;Do, Duc-H.;Miyazaki, Masashi;Wei, Feng;Yoon, Sung-Hwan;Wang, Jeffrey C.
    • Journal of Korean Neurosurgical Society
    • /
    • 제44권5호
    • /
    • pp.327-333
    • /
    • 2008
  • Objective: The purpose of this study is to verify the usefulness of the rabbit model for disc degeneration study. Materials: The L1-L2, L2-L3, L3-L4. or L4-L5 lumbar intervertebral disc (IVD) of 9 mature male New Zealand White rabbits were injured by inserting a 16-gauge needle to a depth of 5 mm in the left anterolateral annulus fibrosus while leaving L5-L6 IVD uninjured. Three other rabbits also received intradiscal injections of rabbit disc cells transfected with adenovirus and bone morphogenetic protein-2 (ad-BMP-2) at L4-L5 in addition to injury by 16-gauge needle at the L1-L2 level. Using digitized radiographs, measurements of IVD height were made and analyzed by using the disc height index (DHI). Magnetic resonance imaging (MRI) scans of the injured discs, injected discs, and uninjured L5-L6 discs were performed at 15 weeks post surgery and compared with preoperative MRI scans. Results: All twelve rabbits showed consistent results of disc degeneration within 15 weeks following annular puncture. DHIs of injured discs were significantly lower than that of the uninjured L5-L6 discs (p<0.05). The mean value of disc degeneration grade of injured discs was significantly higher than that of uninjured discs (p<0.05). The injection of disc cell transfected with ad-BMP-2 did not induce disc regeneration at 15 weeks after injection. Conclusion: This study showed that the injured disc had a significant change in DHI on simple lateral radiograph and disc degeneration grade on MRI scans within 15 weeks in all rabbits. Rabbit annular puncture model can be useful as a disc degeneration model in vivo.

좌골신경섬유 재생시 Cdc2 kinase 매개성 슈반세포 활성화의 역할 규명 (Cdc2 promotes activation of Schwann cell in regenerating axon after sciatic nerve injury in the rat.)

  • 한인선;서태범;김종오;남궁욱
    • 혜화의학회지
    • /
    • 제14권1호
    • /
    • pp.201-211
    • /
    • 2005
  • Cdc2 kinase is a prototypical cyclin-dependent kinase critical for G2 to M phase cell cycle transition. Yet, its function in the nervous system is largely unknown. Here, we investigated possible role of Cdc2 in axonal regeneration using sciatic nerve system in rat. Cdc2 protein levels and activity were increased in the injured sciatic nerves 3 and 7 days after crush injury and then decreased to basal level 14 days later. Administration of Cdc2 kinase inhibitor roscovitine in vivo at the time of crush injury significantly inhibited axonal regeneration when regrowing axons were analyzed using retrograde tracers. Cdc2 protein levels in cultured Schwann cells which were prepared from sciatic nerves 7 days after crush injury were much higher compared with those from uninjured sciatic nerves, suggesting that Cdc2 protein expression was primarily induced in the Schwann cells. To further investigate Cdc2 function in Schwann cell, we examined changes in cultured Schwann cell proliferation and migration in culture system. Both the number of proliferating Schwann cells and the extent of neurite outgrowth from co-cultured DRG neurons were significantly decreased by Cdc2 inhibitor roscovitine treatment in DRG culture which was prepared from animals with sciatic nerve injury for 7 days. Also, Schwann cell migration in the injured sciatic nerve explant was significantly inhibited by roscovitine treatment. Taken together, the present data suggest that Cdc2 may be involved in peripheral nerve regeneration via Schwann cell proliferation and migration.

  • PDF