• 제목/요약/키워드: Injector timing

검색결과 62건 처리시간 0.023초

스크러버형 EGR시스템 디젤기관의 피스톤 및 피스톤링 마모에 미치는 재순환 배기의 영향에 관한 연구 (A Study on Effect of Recirculated Exhaust Gas upon Wears of Piston and Piston Rings in Diesel Engines with Scrubber EGR System)

  • 배명환;하정호
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.79-86
    • /
    • 2000
  • The effects of recirculated exhaust gas on the wears of piston and piston rings were investigated by the experiment with a two-cylinder, four cycle, indirect injection diesel engine operating at an engine load of 75% and an engine speed of 1600 rpm. For the purpose of comparison between the wear rates of two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot contenets in exhaust emissions were removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out on the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR, and that the wear rates of the top and second piston ring(compression ring)thickness with EGR were more than twice the wear rate of top ring in case of no EGR, but the wear rate of oil rings thickness without EGR increased greater than that with EGR.

  • PDF

포트분사식 이륜차 엔진의 연료 분사시기에 따른 연료 증발 특성 (Fuel Evaporation Characteristics of a Port Injection Type Motorcycle Engine with Changing Fuel Spray Timing)

  • 이기형;강인보;김형민;백승국
    • 대한기계학회논문집B
    • /
    • 제29권12호
    • /
    • pp.1360-1368
    • /
    • 2005
  • This study investigates the characteristics of spray, such as evaporation rate and spray trajectory, for a 4-hole injector which is applied to a 4-valve motorcycle gasoline engine. Three dimensional, unsteady, compressible flow and spray within the intake-port and cylinder have been simulated using the VECTIS code. Spray characteristics were investigated at 6000 rpm engine speed. Furthermore, we visualized fuel behavior in the intake-port using a CCD camera synchronized with a stroboscope in order to compare with the analytical results. Boundary and intial conditions were employed by complete 1-D simulation of the engine using the WAVE code. Fuel was injected into the intake-port at two time intervals relative to the position of the intake valves so that the spray arrived when the valves were closed and fully open. The results showed that the trajectory of the spray was directed towards the lower wall of the port with injection against the closed valves. With open valve injection, a large portion of the fuel was lifted by the co-flowing air towards the upper half of the port and this was confirmed by simulation and visualization.

차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정 (A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells)

  • 조성근;이충훈
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

A Study on Effect of Recirculated Exhaust Gas upon Wear of Cylinder Liner and Piston in Diesel Engines

  • 배명완
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1524-1532
    • /
    • 2001
  • The effects of recirculated exhaust gas on the wear of cylinder liner and piston were experimentally investigated by a two-cylinder, four cycle, indirect injection diesel engine operating at 75% lo ad and 1600 rpm. For the purpose of comparison between the wear rates of the two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot in exhaust emissions was removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out with the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the mean wear rate of cylinder liner with EGR was greater in the measurement positions of the second half than those of the first half, that the mean wear rate without EGR was almost uniform regardless of measurement positions, and that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR.

  • PDF

스크러버형 EGR시스템 디젤기관의 배기 배출형 특성에 관한 연구 (A Study on the Characteristics of Exhaust Emissions in Diesel Engines with Scrubber EGR System)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.481-489
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristics of fuel economy combustion and exhaust emissions have been experimentally investigated by a four-cylinder four cycle indirect injection water-cooled and marine diesel engine operating at several loads and speeds. in order to reduce the soot contents in the recirculated exhaust gas to intake system of the engine a novel diesel soot removal system with a cylinder-type scrubber which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured for the experiment system The experiments in this study are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions, The brake specific fuel consumption rate is slightly fluctuated with EGR in the range of experimental conditions, The maximum value of premixed combustion for the rate of heat release is decreased with EGR at engine load 25% and the ignition is slightly delayed with EGR at engine load 100% NOx emissions are markedly decreased with EGR especially at high loads while soot emissions are increased as the EGR rate rises.

  • PDF

다구찌 방법을 적용한 Off-road 디젤 엔진의 분사조건 및 EGR 율 최적화에 관한 연구 (Study on Optimization of Fuel Injection Parameters and EGR Rate of Off-road Diesel Engine by Taguchi Method)

  • 하형수;안중규;박찬수;강정호
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.84-89
    • /
    • 2014
  • Not only the emission regulation of on-road vehicle engine, but also emission regulation of off-road engine have been reinforced. It is the reason of wide application of emission reduction technology for off-road engines. In this study, optimization of engine parameters (Injector hole number, Injection timing and EGR rate) for reduction of NOx and smoke emissions were conducted by using the analysis of sensitivity and S/N ratio of Taguchi method(DOE). As results, this paper shows optimum value of the parameters for NOx and smoke emission reduction. From the result of reproducibility verification, it is final that the prediction value of NOx and smoke has the error of below 10%. Consequently, the method and results of this study will be used for quantitative reference to EGR control mapping in next study.

흡입공기온도의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기 특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Inlet-Air Temperature)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.19-24
    • /
    • 2006
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel was injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector was water-cooled by a specially designed coolant passage. The engine performance and emission characteristics were investigated under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, 150 to $180^{\circ}C$ in the inlet-air temperature, and $60^{\circ}$ BTDC in the injection timing. The ultra lean-burn with self-ignition of gasoline fuel by heating inlet air was achieved in a controlled auto-ignition gasoline engine. It could be also achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

발전용 대형 디젤 엔진의 천연가스-디젤혼소 운전 특성에 대한 수치해석 연구 (A Numerical Study on Performance of a Heavy-Duty Diesel engine for Power Generation under Natural Gas-Diesel Dual Fuel Operation)

  • 조정근;박상준;송순호;허광범
    • 한국가스학회지
    • /
    • 제19권2호
    • /
    • pp.29-36
    • /
    • 2015
  • 본 연구는 발전용 디젤 엔진을 천연가스/디젤 혼소 엔진으로 개조하기 위한 선행 연구로 1.5MW급 발전용 디젤 엔진을 대상으로 상용 프로그램인 GT-Power를 이용해 수치해석을 진행하였다. 흡기 포트에 천연가스 분사 장치를 추가한 수치해석 모델을 통해 기존 엔진에서 천연가스와 디젤을 혼소시킬 경우 엔진 성능에 미치는 영향과 특성에 대해 분석하였다. 엔진 속도 720RPM, 혼소율 0%~40%까지 5개 조건에서 수치해석을 진행했다. 연구 결과 혼합 연소 시 천연가스의 비율이 증가할수록 출력이 감소하는 경향을 보였으며 혼소율 40%에서 출력이 18.4% 감소하였다. 이에 따라 실험계획법(Design of Experiment)을 통해 연료 분사시기와 연료 분사 기간에 대한 영향을 분석했다. 또한 이러한 영향을 고려해 연료 분사시기와 분사기간을 최적화시켜 혼소 엔진 출력과 디젤 엔진의 출력을 비교하여 혼소엔진으로의 개조에 따른 엔진의 출력과 효율에 대한 변화를 정량적으로 도출하였다. 그 결과 혼소율 40%에서 엔진 출력은 8.55% 감소하여 최적화 이전에 비해 12.5%의 개선 효과를 보였다.

디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구 (A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines)

  • 배명환;하정호
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구 (A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF