• 제목/요약/키워드: Injector timing

검색결과 62건 처리시간 0.022초

연소제어인자의 변화에 따른 직접분사식 초희박 LPG엔진의 연소특성 연구 (Study of Combustion Characteristics with Variations of Combustion Parameter in Ultra-Lean LPG Direct Injection Engine)

  • 박윤서;박철웅;오승묵;김태영;최영;이용규
    • 대한기계학회논문집B
    • /
    • 제37권6호
    • /
    • pp.607-614
    • /
    • 2013
  • 오늘날 전 세계의 자동차 회사들은 연비를 향상시키고 배기가스를 저감시키기 위해 다양한 기술을 개발하고 있다. 그 중 직접분사식 초희박 연소기술은 연료제어의 정확도를 향상시켜 연소 효율을 극대화하고 초희박 연소를 통해 연비를 향상 시킬 수 있는 차세대 기술로 평가받고 있다. 따라서 기존 가스엔진에 초희박 직접분사 기술을 적용한 초희박 LPG 직접분사 엔진을 개발하기 위해 $2{\ell}$ 급 MPI 엔진을 베이스 엔진으로 실린더 헤드를 재설계하였다. 재설계된 헤드는 초희박 연소를 구현하기 위해 인젝터와 점화플러그가 헤드 중앙에 장착되는 분무유도방식 연소시스템을 적용하였다. 연료 분사 압력별 연료 분사 시기와 점화 시기의 변경을 통해 연료 소비율과 연소 안정성을 측정하였으며 이를 통해 최적연료 분사시기와 점화시기를 선정하였다.

포트 마스킹이 엔진의 부분부하 성능에 미치는 영향: Part I - 희박연소 한계 (Effects of Port Masking on Part Load Performance: Part I - Lean Misfire Limit)

  • 이원근;엄인용
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.17-22
    • /
    • 2001
  • This paper is the first of companion papers, which investigate port-masking effects on lean misfire limit. Port-masking was applied to commercial SOHC 3-valve and DOHC 4-valve engine by inserting masking plates between manifold and port. To induce various conditions of stratification, six types of masking plates were applied. The masking plates were placed in the upstream of injector to prevent wall wetting and two ports were not separated to permit both fuel and air entering through masked port. The results were compared with those by conventional port throttling. The results show that lean misfire limit mainly depends on masking direction, that is, high lean misfire limit is achieved when the port near the spark plug is masked. The mechanism of stratification by masking is different from axial stratification by port throttling. In this case, the rich mixture entering through masked port plays a very important role in the stratification process.

  • PDF

Cycle-to-Cycle Fluctuations in a Spark Ignition Engine at Low Speed and Load

  • Han, Sung Bin;Hwang, Sung Il
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.205-210
    • /
    • 2013
  • Cycle-to-cycle variation has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. At a part load, some of the cycles tend to knock, while others may have incomplete combustion by the time the exhaust valve opens. An experimental study has been performed in order to evaluate the relative contribution of several relevant parameters on the cyclic variability in spark ignition engines. In general, the stability of engine operation is improved with fuel injector according to the optimal injection timing, but the stability of engine operation at idle is not improved compared with a practical gasoline engine. In this study, we investigated the relationship of the effect of operating conditions for the stability at low speed and load.

직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구 (Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System)

  • 윤천한;김경훈
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석 (Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model)

  • 최민기
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

유전알고리즘을 이용한 대형 디젤 엔진 운전 조건 최적화 (Optimization of Heavy-Duty Diesel Engine Operating Parameters Using Micro-Genetic Algorithms)

  • 김만식
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.101-107
    • /
    • 2005
  • In this paper, optimized operating parameters were found using multi-dimensional engine simulation software (KIVA-3V) and micro-genetic algorithm for heavy duty diesel engine. The engine operating condition considered was at 1,737 rev/min and 57 % load. Engine simulation model was validated using an engine equipped with a high pressure electronic unit injector (HEUI) system. Three important parameters were used for the optimization - boost pressure, EGR rate and start of injection timing. Numerical optimization identified HCCI-like combustion characteristics showing significant improvements for the soot and $NO_X$ emissions. The optimized soot and $NO_X$ emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively. Moreover, the optimum results met EPA 2007 mandates at the operating point considered.

전자제어식 직접분사 디젤 엔진 연소실내의 분무연소 특성에 관한 연구 (A study on the spray combustion characteristics in a cylinder of a D.I.diesel engine with the electronically controlled injector)

  • 정재우;김성중;이기형;선우명호
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.50-56
    • /
    • 2000
  • It is well known that the combustion phenomenon of diesel engine is an unsteady turbulent diffusion combustion. Therefore, the combustion performance of diesel engine is related to a complex phenomenon which involves the various factors of combustion, such as a injection pressure, injection timing, injection rate, and operation conditions of engine. In this study, the spray and the flame development processes in a single cylinder D.I. diesel visualization engine which uses the electronically controlled injection system were visualized to interpret the complicated combustion phenomenon by using high speed CCD camera. In addition, the cylinder pressure and heat release rate were also obtained in order to analyze the diesel combustion characteristics under several engine conditions.

  • PDF

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

NOx와 PM 배출물 특성을 고려한 오프로드 디젤 엔진의 강건 설계에 관한 연구 (Study of Robust Design of a Off-road Diesel Engine considering Emission characteristics of NOx and PM)

  • 정진은;안중규
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.4729-4735
    • /
    • 2014
  • 적극적인 환경보호를 위해 그동안 상대적으로 소홀하였던 오프로드 엔진에 대한 배기가스 배출 규제가 강화되고 있다. 본 연구에서는 NOx와 PM 배출물 특성을 고려하여 오프로드 디젤 엔진의 강건 설계를 수행하였다. 이를 위하여 실험계획법에 따라 배출물 NOx와 PM의 측정 실험을 수행하고 다구찌 기법으로 망소 SN 비를 산출하고 분산 분석을 수행하였다. NOx와 PM 배출량에 영향을 미치는 제어 인잘로 인젝터 홀 수, 연료 분사 시기, EGR 율을 선택하였으며 각 제어 인자에 대하여 2 또는 3 수준을 고려하여 직교 배열표를 작성하였고, 이에 근거하여 실험을 수행하였다. 망소 SN 비를 산출하고 델타 통계량을 계산하였다. 저부하 운전 조건에서는 분사 시기가 NOx 배출량에 가장 큰 영향을 미치며, EGR 율이 PM 배출량에 가장 큰 영향을 미치는 결과를 얻었다. 제어 인자들에 대한 신뢰수준은 90% 이상이었다.

연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 - (A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load -)

  • 이상만;정영식;채재우
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.