• Title/Summary/Keyword: Injection stroke

Search Result 152, Processing Time 0.024 seconds

Delayed Intraventricular Nogo Receptor Antagonist Promotes Recovery from Stroke by Enhancing Axonal Plasticity

  • Kim, Tae-Won;Lee, Jung-Kil;Joo, Sung-Pil;Kim, Tae-Sun;Kim, Jae-Hyoo;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.2
    • /
    • pp.130-135
    • /
    • 2006
  • Objective : After ischemic stroke, partial recovery of function frequently occurs and may depend on the plasticity of axonal connections. Here, we examine whether blockade of the Nogo/NogoReceptor[NgR] pathway might enhance axonal sprouting and thereby recovery after focal brain infarction. Methods : Adult male Sprague Dawley rats weighing $250{\sim}350g$ were used. Left middle cerebral artery occlusion[MCAO] was induced with a intraluminal filament. An osmotic mini pump [Alzet 2ML4, Alza Scientific Products, Palo Alto, CA] for the infusion of NgR-Ecto[310]-Fc to block Nogo/NgR pathway was implanted 1 week after cerebral ischemia. Prior to induction of ischemia, all animals received training in the staircase and rotarod test. Two weeks after biotin dextran amine injection, animals were perfused transcardially with PBS, followed by 4% paraformadehyde/PBS solution. Brain and cervical spinal cord were dissected. Eight coronal sections spaced at 1mm intervals throughout the forebrain of each animal with cresyl violet acetate for determination of infarction size. Images of each section were digitized and the infarct area per section was measured with image analysis software. Results : Histological examination at 11 weeks post-MCAO demonstrates reproducible stroke lesions and no significant difference in the size of the stroke between the NgR[310]Ecto-Fc protein treated group and the control group. Behavioral recovery is significantly better and more rapid in the NgR-Ecto[310]-Fe treated group. Blockade of NgR enhances axonal sprouting from the uninjured cerebral cortex and improves the return of motor task performance. Conclusion : Pharmacological interruption of NgR allows a greater degree of axonal plasticity in response this is associated with improved functional recovery of complicated motor tasks.

Effects of Ambient Conditions on the Atomization of Direct Injection Injector (분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향)

  • Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF

The Effects of Tumble and Swirl Flow on the Behavior of Liquid/Vapor Phases in a DI Gasoline Engine (직분식 엔진에서 실린더 내 연료의 액.기상 거동에 미치는 텀블과 스월의 영향)

  • 강정중;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2002
  • This present study experimentally investigates the behavior of liquid and vapor phase of fuel mixtures with changing the in-cylinder air motion in an optically accessible engine. The conventional MPI/DOHC engine was modified to gasoline direct injection engine with swirl motion. The images of liquid and vapor phases were captured in the motoring operation condition using exciplex fluorescence method. Two dimensional spray fluorescence images of liquid and vapor phases were acquired to analyze spray behaviors and fuel distribution inside of cylinder respectively, In early injection timings $(BTDC\;270^{\circ},\;180^{\circ})$, tumble flow transported most of vapor phase to the lower region and the both sides of cylinder, so vapor phase didn't become uniform distribution up to the half of the compression stroke. In the case of swirl flow, the fuel mixture was confined near the swirl origin in upper region of cylinder. In late injection timings $(BTDC\;90^{\circ})$, tumble flow transported vapor phase to the intake valve and swirl flow to the exhaust valve.

EXPERIMENTAL STUDY ON THE STRATIFIED COMBUSTION CHARACTERISTICS ACCORDING TO COMPRESSION RATIO AND INTAKE TEMPERATURE IN A DIG ENGINE

  • Lee, C.H.;Lee, K.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.675-680
    • /
    • 2006
  • In the direct injected gasoline engine, atomized spray is desired to achieve efficient mixture formation needed to good engine performance because the injection process leaves little time for the evaporation of fuels. Therefore, substantial understanding of global spray structure and quantitative characteristics of spray are decisive technology to optimize combustion system of a GDI engine. The combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition(SCCI) engine according to intake temperature and compression ratio was examined. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions, which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The mixture stratification and the fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

A Study on the Spray Characteristics of Swirl Injector for Use a HCCI Engine using Entropy Analysis and PIV Technique (엔트로피 해석과 PIV를 이용한 HCCI 엔진용 스월 인젝터의 분무 특성 해석에 관한 연구)

  • 안용흠;이창희;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • The objective of this study is to analyse the spray characteristics according to the injection duration under ambient pressure condition and to investigate the relationship between vorticity and entropy for controlling diffusion process that is the most important thing during the intake stroke injection process. Therefore, the spray velocity was obtained by using the PIV method that has been an useful optical diagnostics technology, and vorticity calculated from spray velocity component with vorticity algorithm. In addition, the homogeneous diffusion rate of spray was quantified by using the entropy analysis based on the Boltzmann's statistical thermodynamics. From these method, we found that as injection duration increases, spray velocity increases and the location of vortex is moved to the downstream of spray. In the same condition, as the entropy decrease, mean vorticity increases. This means that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation.

An Analytical Study on the Turbocharger Engine Matching of the Marine Four-Stroke Diesel Engine (선박용 4행정 디젤기관의 배기 과급기 엔진 매칭에 관한 해석적 연구)

  • Choi, Ik-Soo;Kim, Hyun-Kyu;Yoo, Bong-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.86-87
    • /
    • 2005
  • The combustion characteristics of the D.I. diesel engine are largely dependent on the air-fuel ratio and the gas exchange process. The main factors are the shape of combustion chamber, fuel injection system, air flow inside the cylinder, intake air mass flow rate and so forth. Because these factors affect the combustion in a mutual and combined manner, it is very important to clearly understand the correlation of these factors in order to provide the combustion improvement plans. In this paper, we studied the performance and the gas exchange process of marine four-stroke engine using the engine cycle simulation. Also, we predicted briefly turbocharger engine matching.

  • PDF

Development of New Semi-solid Method and Practical Application to Bearing Bracket (신 반응고 슬러리의 개발과 베어링 브라켓에 대한 적용)

  • Sim, Jae-Gi;Moon, Jun-Young;Kim, Jae-Min;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.173-178
    • /
    • 2007
  • The bearing bracket, which has produced by the squeeze casting for the high strength in lightweight part of automobile, was developed by the rheocasting process using the H-NCM slurry. Compared with the squeeze casting, the rheocasting process has some merits such as shortening cycle-time, reducing total weight, and increasing productivity. In this study, partial feeding test was carried out by controlling plunger stroke length and compared with semisolid simulation. Optimal casting parameters such as injection speed and stroke variations were established. Sound products with integral microstructure were obtained by the H-NCM slurry and X-ray analysis also showed the integral condition throughout the entire parts.

Film Insert Molding of Automotive Door Grip Using Injection-Compression Molding (사출압축성형을 이용한 자동차용 도어그립 필름인서트성형)

  • Lee, Ho Sang;Yoo, Young Gil;Kim, Tae An
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.771-777
    • /
    • 2014
  • Injection-compression molding was used for film insert molding of an automotive door grip using films with three-dimensional embossed patterns. A vacuum mold was fabricated for vacuum-assisted thermoforming of the film, and an injection-compression mold was developed for film insert molding. Three pressure transducers were installed inside the mold cavity to measure cavity pressures. Injection-compression molding experiments under various compression strokes and toggle speeds were performed to investigate their effects on the cavity pressure and heights of the embossed patterns. The compression stroke of 0.9mm and low toggle speed resulted in a higher degree of conservation of embossed patterns. Additionally, the processing conditions for the maximum heights of embossed patterns were almost similar to those for minimum integral value of cavity pressures. The injection-compression molding process presents the opportunity to impart a soft-touch feeling of plastic parts printed with embossed patterns.

Clinical Studies on 56 Cases of Having Treated patients suffering from Ischemic Stroke through both Urokinase and Therapeutics of Oriental Medicine (Urokinase와 동의학적요법(東醫學的療法)으로 동시치료(同時治療)한 허혈성뇌졸중환자(虛血性腦卒中患者) 56례(例)에 대(對)한 임상적(臨床的) 연구(硏究))

  • Kim, In-Sup
    • The Journal of Korean Medicine
    • /
    • v.15 no.2 s.28
    • /
    • pp.46-91
    • /
    • 1994
  • l. Backgrounds of Studies Cerebrovascular accident. one of the three major causes of death among audults with cardiopathy and malignancy, has been on the increase in korea while it is on the decrease in European countries and Japan. Types of stroke undergo changes caused by prolongment of life expectancy. and social and economic variety. More patients of ischemic stroke show a tendency to increase now than those of hemorrhagic stroke in the past. Many clinical studies on medical cerebrovascular and oriental stroke of paralysis have been published. but few clinical studies on therapeutics of integrated oriental and western medicine are to be found. So I have made an attempt to study clinical observations and therapeutic responses of ischemic stroke under integrated oriental and western medicine. 2.Methods. Among the patients admitted into the clinic of Joong-Poong, Woo-Suk University Hospital from May 1. 1993 until April 30. 1994 those 56 patients who were diagnosed as ischemic stroke on Computed Tomography(CT) and showed no dubious symptom after examination of coagulation and bleeding time were classified into the following six steps and treated: l)diagnosis 2)emergency treatment 3)basic treatment 4)treatment of risk and provoking factors. and preceeding disease 5)complications and conservative therapy 6)rehabilitation. For a period of basic treatment both herb medication and urokinase therapy were applied at the same time. Intravenous injection has been given at a unit of 300.000 dosage a day as urokinase therapy during basic treatment. If they showed any dubious symptom in glucose tolerance test. fructose 500ml and urokinase 300.000 dosage were mixed and injected. In case of no symptom 5% DW 500ml was mixed with urokinase 300.000 unit. and injected at a speed of 15gtt per minute. 3. Results and Conclusions 1) The level of ambulation has been improved from 42.9% when admitted to 73.2% when discharged in the degree of recovery. The level of severe function disorder has been remarkably decreased from 55.4% when admitted to 19.6% when discharged. 2) The treatment effect on the basis of therapeutic response of clinical and subjective symptom shows as follows: 7.1% Excellent. 35.7% Good. 37.5% Effective. 10.7% Stationary. and 8.9% Aggravated. The total recovery above effective shows 80.3%. Judging from the above results I think it proper to develop the model of better preventing and treating ischemic stroke through effective therapeutic and clinical studies of integrated oriental and western medicine.

  • PDF

Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine (천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션)

  • Choi, In Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF