• Title/Summary/Keyword: Injection pipe

Search Result 161, Processing Time 0.033 seconds

An effect of design parameters of water injection silencer on the characteristics of noise generated by Liquid Rocket Engine (물분사형 소음기의 설계 변수가 액체로켓엔 소음특성에 미치는 영향)

  • Park, Hee-Ho;Cho, Byoung-Sun;Kim, Yoo;Ji, Pyung-Sam;Kim, Seon-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.83-87
    • /
    • 1998
  • To reduce the supersonic jet noise from the liquid rocket engine, water injetion silencers were designed and tested. Test variables were the mass flow rate of water jet, the length of primary pipe and the diameter of expansion pipe. Followings are the results of this study. 1. From the same mass flow rate of water, longer primary pipe was more effective to reduce the noise. 2. Noise level was significantly reduced with increasingly water flow rate. 3. The optimum water flow rate was 10~12 times of the propellant flow rate. 4. By installing expansion pipe, noise level was reduced approximately 30㏈ compared to without expansion pipe

  • PDF

The Effect of Tributary Pipe Breaks on the Core Support Barrel Shell Responses (분기관파단이 노심지지배럴의 쉘응답에 미치는 영향)

  • Jhung, Myung-Jo;Hwan, Won-Gul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.204-214
    • /
    • 1993
  • Work on fracture mechanics has provided a technical basis for elimination of main coolant loop double ended guillotine breaks from the structural design basis of reactor coolant system. Without main coolant loop pipe breaks, the tributary pipe breaks must be considered as design bases until further fracture mechanics work could eliminate some of these breaks from design consideration. This paper determines the core support barrel shell responses for the 3 inch pressurizer spray line nozzle break which is expected to be the only inlet break remaining in the primary side after leak-before-break evaluation is extended to smaller size pipes in the near future. The responses are compared with those due to 14 inch safety injection nozzle break and main coolant loop pipe break. The results show that, when the leak-before-break concept is applied to the primary side piping systems with a diameter of 10 inches or over, the core support barrel shell responses due to pipe breaks in the primary side are negligible for the faulted condition design.

  • PDF

Experiment Study on Mixing Efficiency of Material for Improving Reclamation Soil Quality in Dredging Soil Pipeline using CFD (준설토 배송관로 내에서의 개질재 혼합효율에 대한 CFD 해석)

  • Park, Byongjun;Kang, Byungyoon;Chung, Minchul;Shin, Jaeryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1083-1096
    • /
    • 2015
  • This study utilised Computational Fluid Dynamics(CFD) for preliminary assessment of mixing efficiencies of 2-phase fluids in a pipe at which a slurry flow and an injected solidifier join, for the purposes of reducing trial-and-error-based instances of physical experiments and conducting the overall research in an economical way. Using OpenFOAM$^{(R)}$, we simulated behavior of 3-phase fluids under 18 different settings generated by changing diameters of a dredged soil transportation pipe, a quality improving material injection pipe and the confluence angle. While difference in mixing efficiencies amongst the instances was insignificant, discernible boundary layers amongst the materials were observed in all of the instances. In order to break the boundary layers, we designed a substructure inside a pipe and found out that it could remarkably improve mixing efficiencies particularly for short distance applications.

A Study for Preventing Folding Defect of the Common Rail Pipe in Heading Process (커먼레일 파이프 헤딩공정의 접힘결함 방지에 관한 연구)

  • Song, Myung-Jun;Woo, Ta-Kwan;Jung, Sung-Yuen;Hur, Kwan-Do;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • With the latest automobile technology, though the third generation common rail system requires high injection pressures up to 1,800bar, the next generation diesel engine is expected to require more higher pressures than the third generation. The common rail pipe requires higher strength because it is one of the parts in the common rail system, which is influenced directly by fuel under high pressure. Preform design is very important for preventing head of the common rail pipe from folding in the heading process. In this study, die angle, curvature, outer diameter of die and length of trapped part are selected as main parameters to obtain best preform shape minimizing radius of folding. Therefore optimal design is carried out by finite element analysis and Taguchi method through main parameters. Results of the finite element analysis have good agreements with those of the experiments in the actual field.

The Ground Reinforcement on Daylight Collapsed Block of Crown Head in the Face of the Tunnel of Highway (고속도로 터널막장 천단부의 붕락구간에 대한 지반보강)

  • 천병식;정덕교;한기식;정진교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.323-330
    • /
    • 1999
  • Daylight collapse have been occurred by about 5.0m deep at ground surface and collapse of the crown head part of the tunnel have connected to the ground surface during first step of shotcrete work after blasting of upper half section of the tunnel driving at two-way double track tunnel face section on highway construction. This study is for a successful illustration case for the earth improvement method through applying such strengthening methods as cement milk grouting, S.G.R grouting,, steel pipe reinforced multi-step grouting etc. for the purpose of earth strengthening of loosened earth block occurred by tunnel collapse.

  • PDF

A Bead Shape Classification Method using Neural Network in High Frequency Electric Resistance Welding (신경회로망을 이용한 고주파 전기 저항 용접 파이프의 비드 형상 분류)

  • Ko, K.W.;Kim, J.H.;Kong, W.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.86-94
    • /
    • 1995
  • Bead shape in high frequency electric resistance (HER) pipe welding gives useful information on judging current welding conditon. In most welding process, heat input is controlled by skilled operators observing color and shape of bead. In this paper, a visual monitoring system is designed to observe bead shape in HERW pipe welding process by using structured light beam and a C.I.D(Charge injection device) camera. To avoid some difficul- ties arising in extracting stable features of stripe pattern and classifying the extracted features, Kohonen neural network is used to classify such bead shapes. The experimental results show accurate classification performance of the proposed method.

  • PDF

Numerical Analysis of Thermal Stratification and Turbulence Penetration into Leaking Flow in a Circular Branch Piping (원형 T분기배관 내 누설유동의 열성층화와 난류침투에 관한 전산해석적 연구)

  • Han, Seong-Min;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1833-1838
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack(TFC) accident. In the present study, when the turbulence penetration occurs in the branch piping, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine

  • PDF

Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG (가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Kang, Kern-Yong;Cho, Jun-Ho;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

A Study on Drag Reduction of Cylindrical Underwater Body Using Sintered Mesh (소결 메쉬를 이용한 원통형 수중운동체 항력 감소 연구)

  • Jung, Chulmin;Paik, Bugeun;Kim, Kyungyoul;Jung, Youngrae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.195-203
    • /
    • 2018
  • Among the techniques of reducing the drag to increase the speed of underwater moving bodies, we studied on the drag reduction method by gas injection. Researches on gas injection method have been paid much attention to reduce the drag of vessels or pipe inner walls. In this study, we used a sintered metal mesh that can uniformly distribute fine bubbles by gas injection method, and applied it to a cylindrical underwater moving body. Using the KRISO medium-sized cavitation tunnel, we measured both the bubble size on the surface of the sintered mesh and the bubble distribution in the boundary layer. Then, drag reduction tests were performed on the cylinder type underwater moving models with cylindrical or round type tail shape. Experiments were carried out based on the presence or absence of tail jet injection. In the experiments, we changed the gas injection amount using the sintered mesh gas injector, and changed flow rate accordingly. As a result of the test, we observed increased bubbles around the body and confirmed the drag reduction as air injection flow rate increased.

A Study on Expansion of Back Fire Limit Equivalence Ratio of the Hydrogen Fueled Engine (수소기관의 역화한계당량비 확장에 관한 연구)

  • Paik, Sung Ho;Park, Jae Bum;Kim, Yun Young;Lee, Jong Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.3
    • /
    • pp.111-119
    • /
    • 1997
  • In this study, feasibility of expansion of BFL equivalence ratio are examined with change of injection location of hydrogen gas in intake pipe, coolant temperature, spark timing and amount of residual gas. As the results, BFL equivalence ratio is increased when injection location has some distance from intake valve. And it is decreased in accordance with increasing of coolant temperature and advance of spark timing. The amount of residual gas has little effect on BFL equivalence ratio.

  • PDF