• Title/Summary/Keyword: Injection nozzle

Search Result 599, Processing Time 0.024 seconds

A Behavior Study of Diesel Spray on High Temperature (고온 분위기에서 디젤 분무의 거동에 관한 연구)

  • Ryu, H.S.;Chong, I.G.;Song, K.K.;YANO, T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.410-415
    • /
    • 2000
  • A diesel engine is one of the major prime movers to its high thermal efficiency. But due to the recent attention far the environmental pollution, the emissions of diesel engine became to a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. The factor which controls the diesel spray are the injection pressure, the nozzle diameter, the impinging angle and the variation of pressure and temperature. In this paper, experiments were conducted far the variation of the environmental temperature(273k, 373k, 573k), free spray and impinging spray. And the notions of penetration, spray angle, axial distance for free spray, and axial distance, spray thickness from impinging wall fur impinging spray.

  • PDF

Prediction of sphere surface by the theoretical area error at FDM (FDM에서 이론적 면적오차법에 의한 구형제품의 표면예측)

  • 전재억;권혁준;김수광;김준안;정진서;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.262-265
    • /
    • 2002
  • Fused deposition modelling(FDM) is a rapid prototyping(RP) process that fabricates part layer by layer by deposition of molten thermoplastic material extrude from a nozzle. RP system has many benefit. One of the benefit would be the ability to experiment wiか physical objects of my complexity in a relatively short period of time. But it has a matter of surface roughness and geometric accuracy. We study on Influence of angle of tangent line and area error on sphere surface roughness at fused deposition.

  • PDF

A Prediction of DI Diesel engine Performance using the Multizone Model (Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구)

  • ;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

Analysis of Performance of an Air-Type Garlic Peeler for its Optimum Design (공기식 마늘 박피기의 적정 설계를 위한 요인별 영향 분석)

  • Cho, Y.J.;Kim, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.351-357
    • /
    • 1993
  • Recently, a garlic peeler with high performance is being demanded due to increase of consumption of peeled garlic. Although the air type out of various types of garlic peelers is recommended to remove effectively skin of garlic, it has an important problem of large energy consumption. This study was performed to analyze performance of an air-type garlic peeler for its optimum design. Performance indices to represent performance of garlic peeler include peeling ratio, energy efficiency and peeling performance. The factors such as aperture of nozzle, angle and position of air injection, charge rate of garlic, peeling time and so on must be considered to design optimally an air-type garlic peeler.

  • PDF

A Study on the Mixed-Tank and Injection Nozzle of an Automatic Spreading System of Flux using Numerical Analysis (수치해석을 이용한 플럭스 자동 도포 장치의 혼합 탱크 및 분사 노즐에 관한 연구)

  • Hwang, Soon-Ho;Lee, Young-Lim
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.978-980
    • /
    • 2010
  • Nocolok 브레이징을 이용할 경우 저농도 플럭스와는 달리 고농도 플러스를 이용해 필요한 부분만 도포해야 한다. 일반적으로 고농도 플럭스 도포의 경우 인력을 이용한 수작업을 실시하므로 작업이 비효율적일 뿐만 아니라 플럭스 분진 날림 몇 열 등으로 인해 기피하고 있는 실정이다. 그러므로 경제적이며 효율적인 고농도 플럭스 자동 도포 장치의 개발을 통한 품질 향상 및 생산 단가 저감 등이 절실한 실정이다. 본 연구에서는 고농도 플럭스 자동 도포 시스템을 제작을 위해 수치해석을 이용한 고농도 플럭스 혼합 탱크의 혼합 효율성 및 정수압력을 이용한 유량 분배 해석을 실시하였다.

  • PDF

The Affects of Molecular Properties of Motive Gas on Supersonic Ejection

  • Jin, Jung-Kun;Kwon, Se-Jin;Kim, Se-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.98-106
    • /
    • 2008
  • The motive gas of a supersonic ejector is supplied from different sources depending on the application. The performance of an ejector that is represented by the secondary flow pressure, starting and unstarting pressures heavily depends on the molecular properties of the motive gas. The effects of specific heat ratio of the motive gas were investigated experimentally for an axi-symmetric annular injection type supersonic ejector. Both the starting pressure and unstarting pressure, however, decreased with the increase of the specific heat ratio of the motive gas. It was discovered that the secondary flow pressure increased as the specific heat ratio of the motive gas decreased even if the stagnation pressure of the motive flow was invariant. However, when the motive gas flow nozzle area ratio is large enough for the motive gas to be condensed, different tendency was observed.

The Effects of Initial Droplet Shape and Number Density on Modeling of Non-evaporating Diesel Sprays (디젤분무의 모델에서 액적의 형상 및 수밀도의 영향에 관한 연구)

  • Won, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.22-30
    • /
    • 2002
  • A number of droplet breakup models have been developed to predict the diesel spray. The capabilities of droplet deformation and breakup models such as TAB, ETAB, DDB and APTAB models are evaluated in modeling the non-evaporating diesel sprays injected into atmosphere. New methods are also suggested that take into account the non- spherical shape of droplets and the reduced drag force by the presence of neighbouring droplets. The KIVA calculations with standard ETAB, DDB, and APTAB models predict well the spray tip penetrations of the experiment, but overestimate the Sauter mean Diameter(SMD) of droplets. The calculation with non spherical droplets injected from the nozzle shows very similar results to the calculation with spherical droplets. The drag coefficient which is linearly increased with the time after start of injection during the breakup time gives the smaller SMD that agrees well with the experimental result.

  • PDF

Evaluation of a Propulsion Force Coefficients for Transportation of Wafers in an Air Levitation System (공기부상방식 반도체 웨이퍼 이송시스템의 추진력계수)

  • 문인호;황영규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.820-827
    • /
    • 2004
  • The propulsion force acting on a wafer in an air levitation system was measured accurately and then, the corresponding force coefficient was determined. The theoretical propulsion force on the wafer bottom surface were obtained by CFD simulations and from these results the propulsion force coefficient was deduced. The transportation velocity of a wafer was estimated by using both experimental and numerical force coefficients, for various air velocity of nozzle injection. When the numerical results are compared to the experimental data, the numerical results agree well Quantitatively.

A Behavior Study of Diesel Spray on High Temperature (고온 분위기에서 디젤 분무의 거동에 관한 연구)

  • 류호성;송규근;안진근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.454-459
    • /
    • 2000
  • Diesel engine which has high thermal efficiency is one of the major movers. Recently, as people pay attention to the environmental pollution, the emission of Diesel engine becomes an important problem. So it is needed to understand the characteristics of diesel fuel spray injected into a combustion chamber to reduce the emission. The factors which control the diesel fuel spray are the injection pressure, the nozzle diameter, the impinging angle and the variation of an ambient pressure and temperature. In this paper, the experiments were conducted in the free spray and the impinging spray with various ambient temperatures(273K, 373K, 573K). And the behaviors of the diesel fuel spray, such as penetration, spray angle and axial distance in the free spray and axial distance and spray thickness in the impinging spray were studied.

  • PDF

Reaction Characteristics of LPG fuel in LPLi fuel supply system (LPLi연료시스템의 LPG연료 반응성 연구)

  • Kim, Chang-Up;Park, Cheol-Woong;Kang, Kern-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2904-2909
    • /
    • 2008
  • The liquid phase LPG injection (LPLi) system (the 3rd generation technology) has been considered as one of the more promising fuel supply systems for LPG vehicles. To investigate the characteristics of LPG residue in LPLi system, various rubbers were reacted with LPG fuels. The results showed that the residue of a cover rubber in a fuel pump after test increased 10 times higher than that before test. Furthermore, the amount of sulfur, nitrogen species which are considered as main sources in deposit formation in the LPLi fuel injector were also found to be higher than that in original LPG fuel. And these residues made the core parts of LPLi injector such as a neddle and a nozzle, partially worn, which eventually causes a leakage in LPLi injectors.

  • PDF