• Title/Summary/Keyword: Injection monitoring

Search Result 281, Processing Time 0.037 seconds

Geophysics for Carbon Capture and Storage in Korea (국내 CO2 지중저장과 지구물리탐사의 역할)

  • Hwang, Se-Ho;Park, Kwon-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.16-19
    • /
    • 2009
  • Recently, CO2 geologic storage (geologic sequestration) has been concerned as one of methodologies for reducing greenhouse gas. We expect that geophysical approach plays an important role in the site selection, characterization, and monitoring during CO2 injection or post-injection. Especially we believe that monitoring and verification technologies such as surface and borehole geophysical methods are an important part of making CO2 geologic storage an acceptable method.

  • PDF

On-line Monitoring and Control of Substrate Concentrations in Biological Processes by Flow Injection Analysis Systems

  • Rhee, Jong-Il;Adnan Ritzka;Thomas Scheper
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.156-165
    • /
    • 2004
  • Concentrations of substrates, glucose, and ammionia in biological processes have been on-line monitored by using glucose-flow injection (FIA) and ammonia-FIA systems. Based on the on-line monitored data the concentrations of substrates have been controlled by an on-off controller, a PID controller, and a neural network (NN) based controller. A simulation program has been developed to test the control quality of each controller and to estimate the control parameters. The on-off controller often produced high oscillations at the set point due to its low robustness. The control quality of a PID controller could have been improved by a high analysis frequency and by a short residence time of sample in a FIA system. A NN-based controller with 3 layers has been developed, and a 3(input)-2(hidden)-1(output) network structure has been found to be optimal for the NN-based controller. The performance of the three controllers has been tested in a simulated process as well as in a cultivation process of Saccharomyces cerevisiae, and the performance has also been compared to simulation results. The NN-based controller with the 3-2-1 network structure was robust and stable against some disturbances, such as a sudden injection of distilled water into a biological process.

A study on the monitoring of cooling time using the change in the magnitude of mold vibration in injection molding (사출성형에서 공정 중 금형의 진동 크기 변화를 활용한 냉각시간 모니터링에 대한 연구)

  • Yeung, Chris;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.45-49
    • /
    • 2021
  • In this study, during the injection molding process, a device was manufactured and evaluated that calculates a cooling time by measuring a vibration signal generated from a mold using an acceleration. The last two parts, one of which has a large magnitude change in the measured vibration signal of a mold, were divided into a cooling start section (paking end section) and a mold opening section, and the time difference at the relevant points was calculated as the cooling time. The cooling time was monitored on a 5-inch light guide plate mold by applying the method. The manufactured device was attached to a fixed base of mold to measure the cooling time, and data was obtained remotely using Bluetooth technology. Then, the measured cooling time was compared with the cooling time set in the injection molding machine to evaluate the accuracy. As a result of the experiment, the cooling times measured by the devices were 15.675±0.024 sec, 20.637±0.014 sec and 25.623±0.079 sec of each conditions. Also, the measurement results were shown with errors of 0.655±0.044 sec, 0.637±0.014 sec, and 0.662±0.013 sec, respectively.

Evaluation of Injection Degree of Biopolymer Grouting Using Electrical Resistivity (전기비저항을 이용한 바이오폴리머 그라우팅 주입도 평가)

  • Jun, Minu;Cho, Hyunmuk;Ryou, Jae-Eun;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.61-68
    • /
    • 2024
  • Monitoring the injection degree of biopolymers in soils is required in estimating the performance of biopolymer-treated grounds. In this study, the degree of saturation and injection process of biopolymer solutions in sandy soils were evaluated using electrical resistivity. To assess the changes in electrical resistivity according to the contents of the biopolymer solutions, electrical resistivities were measured for Jumunjin sand-xanthan gum biopolymer solution (weight concentration of 0.5%) mixtures with different degrees of saturation of 20%, 40%, 60%, 80%, and 100%. In addition, electrical resistivities were measured at eight layers in oven-dried Jumunjin sand during the upward injection of the xanthan gum biopolymer solution to monitor the injection process. Experimental results showed that the electrical resistivity decreased as the degree of saturation of the mixture increased, and their relationship was constructed. During the injection of the xanthan gum biopolymer solution into the sandy soils, the electrical resistivity decreased and converged and the degree of saturation at each layer could be estimated on the basis of the above-constructed relationship. This study demonstrated that electrical resistivity may be an effective physical property for monitoring the injection degree of biopolymer solutions in the ground.

Embedded Controller Technology of Injection Molding Machine for Control and Monitoring (사출 성형기 제어/감시용 Embedded Controller 기술)

  • Kim, Han Gyu;Son, Il Ho;Song, Joon Yub;Ha, Tae Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.577-583
    • /
    • 2014
  • In this study, we introduce how to apply "Information and Communication Technology (ICT) to injection molding system. We report the current state of IT technology applied to produce their products in micro lens injection molding system. And we explain key technology of ICT for injection molding system and how to implement. Especially, we also mention about an embedded controller, also called as "M2M device". It provides programmable intelligent functions, communication, various interfaces, amplifier functions and mobile device connection to our application.