• 제목/요약/키워드: Injection molds

검색결과 169건 처리시간 0.025초

자동차 헤드램프 부품의 경량화 사출 성형기술 및 변형 저감에 관한 연구 (A study on light weighted injection molding technology and warpage reduction for lightweight automotive head lamp parts)

  • 정의철;손정언;민성기;김종헌;이성희
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, micro cellular injection molding of automobile head lamp housing with uneven thickness structure was performed to obtain improvement on deformation and light-weight of the part. The thickness of the presented model was uniformly modified to control the deformation of the molded part. In order to maximize the lightweight ratio, the model having an average thickness of 2.0 mm were thinly molded to an average thickness of 1.6 mm. GFM(Gas Free Molding) and CBM(Core Back Molding) technology were applied to improve the problems of the conventional foam molding method. Equal Heat & Cool system was also applied by 3D cooling core and individual flow control system. Warpage of the molded parts with even cooling was minimized. To improve the mechanical properties of foamed products, complex resin containing nano-filler was used and variation of mechanical properties was evaluated. It was shown that the weight reduction ratio of products with light-weighted injection molding was 8.9 % and the deformation of the products was improved from the maximum of 3.6 mm to 2.0 mm by applying Equal Heat & Cool mold cooling system. Also the mechanical strength reduction of foamed product was less than 12% at maximum.

국부 가열 금형을 이용한 플라스틱 나노 구조표면 사출성형 연구 (A Study on Plastic Injection Molding of NanosStructured Surface with a Local Mold Heating System)

  • 라문우;박장민;김동언
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.8-13
    • /
    • 2015
  • In this study, we fabricated and characterized a nanostructured surface based on a plastic injection molding with a local mold heating (LMH) system. A metal mold core with a closed packed nano convex array (CVA) was achieved by integrated engineering procedures: (1) master template fabrication by anodic aluminum oxidation (AAO), (2) nickel electroforming (NE) process, and (3) post-processing by precision machining. The nickel mold core was utilized to replicate a surface with a closed packed nano concave-array (CCA) based on injection molding using cyclic olefin copolymer (COC) as a plastic material. In particular, an LMH system was introduced to enhance transcription quality of the nano structures by delaying solidification of molten polymer near the surface of the mold core.

사출금형 냉각시스템 최적화를 위한 설계변수의 감소 방법 연구 (A study on the reduction of design variables for injection mold cooling system optimization)

  • 최재혁;태준성;이병옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.361-364
    • /
    • 2009
  • The cooling system optimization for injection molds was studied with a response surface method in the previous research. It took so much time to find an optimum solution for a large product due to an extensive amount of calculation time for the CAE analysis. In order to use the optimization technique in the actual design process, the calculation time should be much reduced. In this study, we tried to reduce the number of design variables with the concept of the close relationship between the depth and the distance of cooling channels. The optimum ratio of the distance to the depth of cooling channels for a 2-dimensional problem was 2.0 so that the optimum ratio was again sought out for 4 industrial products. The major cooling effect of the injection molds for large products rely on baffle tubes. The optimum ratio of the distance to the depth for baffle tubes was 2.0 for the large products. The result enables us to reduce the number of the design variables by half in the cooling system optimization problem.

  • PDF

탄소섬유 드레이핑 및 수지 유동 해석을 통한 CFRP 제조용 RTM 금형 설계 (Design of RTM molds for CFRP by carbon fiber draping and resin flow simulation)

  • 최광묵;채홍준
    • Design & Manufacturing
    • /
    • 제13권1호
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents the design strategy for the optimal RTM molds of Carbon Fiber Reinforced Plastic (CFRP) by carbon fiber draping and resin flow simulation. First, the mold shape and molding condition were determined considering the undercut and die face of the product in the draping simulation, which made the preliminary shape of the product by compressing the carbon fiber. After that, the diffusion behavior during the injection of resin in the mold was predicted by the resin flow simulation. Finally, the optimal mold shape was designed by selecting the locations of resin injection port and vent based on total results of simulations. In this paper, the mold of automotive side mirror case was selected as the representative product. Also, the actual mold was manufactured based on the simulation design to confirm the practicality of it. This study is expected to contribute to the industry as a technology to improve the reliability and productivity of CFRP producted by RTM process.

편측 분기형 러너 배열을 가진 다수 캐비티 사출금형에서의 충전 불균형도 (The Filling Imbalance in Multi-Cavity Injection Molds with Unary Branch Type Runner Lay-out)

  • 강철민;정영득
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.72-75
    • /
    • 2003
  • Almost all injection molds have multi-cavity runner system for productivity and are designed with geometrically balanced runner system in order to minimize filling imbalance between cavity to cavity during processing. However, filling imbalances have been observed though geometrically balanced runner lay-out are used. Generally, these filling imbalances are due to thermal unbalance, viscosity, characteristic of polymers and so on. These kinds of filling imbalances has already been reported by Beaumont[1] since 1997. In this study, we presented filling imbalaces in balanced runner that has unnary branch type lay-out through experimental tests. As a result of experiments, we could present the processing conditions for the balanced filling in geometrically balanced runner that has unnary branch type lay-out

  • PDF

런너밸런스 알고리즘을 이용한 멀티캐비티 최적성형에 관한 연구 (A Study on The Optimum Design of Multi-Cavity Molding Parts Using The Runner Balance Algorithm)

  • 박균명;김청균
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.41-46
    • /
    • 2003
  • The objective of this paper is to present a methodology for automatically balancing multi-cavity injection molds with the aid of flow simulation. After the runner and cavity layout has been designed, the methodology adjusts runner and gate sizes iteratively based on the outputs of flow analysis. This methodology also ensures that the runner sizes in the final design are machinable. To illustrate this methodology, an example is used wherein a 3-cavity mold is modeled and filling of all the cavities at the same time is achieved. Based on the proposed methodology, a multicavity mold with identical cavities is balanced to minimize overall unfilled volume among various cavities at discrete time steps of the molding cycle. The example indicates that the described methodology can be used effectively to balance runner systems for multi-cavity molds.

사출금형의 언더컷 처리 기구 3차원 설계 (3-D Design System for Slides of Injection Molds to Demold Parts with Undercuts.)

  • 김석렬;장진우;이상헌;우윤환;이강수;허영무;양진석;배규형;김성일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.929-932
    • /
    • 2002
  • As 3-D solid modeling systems have been widely used in product design recently, dedicated design systems for molds of the products have been developed and introduced to mold manufacturers. These mold design systems provide solid modeling capabilites for mechanism to free undercuts. This paper describes an algorithm for slide design capability that has been developed based on a commercial CAD system, Unigraphics. Since the relationship between slide parts were investigated and predefined using parameters in the system, the dimensions and locations of the parts are modifed automatically when a part is modified.

  • PDF

쾌속 3차원 조형법을 이용한 시작기술 및 시작금형 (Development of Prototyping and Die/Mold Manufacturing Technology using Rapid Prototyping(SLA))

  • 박근;이상찬;정준호;양동열;윤재륜
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1582-1589
    • /
    • 1996
  • Rapid prototyping is a new prototyping technology which produces three dimensional part models directrly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Appaaratus(SLA) which is the most widely-used rapid prototyping system is introduced to achieve die/mold technology innovation. For the purpose, the prototyping technology using SLA is developed such that patterns of which shapes are quite complicated are successfully produced with high accuracy. Using these patterns, prototype die/molds are efficientrly manufactured; a turbocharger rotor, a fan and a wheel patterns, prototype die/molds are efficienterly manufactured ; a turbochager rotor, a fan and a wheel pattern are made, and the molds of the investment casting, the injection molding and the die casting are manufactured respectively. The casting products are produced using these molds and it turns out that these methods are quitre effective for manufacturing products of complicated geometry from the viewpoint of efficiency and productivity.

균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작 (Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel)

  • 박형필;차백순;이상용;최재혁;이병옥
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF