• Title/Summary/Keyword: Injection molds

Search Result 169, Processing Time 0.03 seconds

The Arrangement of Heaters for Rubber Injection Molds using FEM and Optimal Design Method (유한요소법과 최적설계 기법을 이용한 고무 사출 금형 히터 배치)

  • Kim, Myung-Hun;Han, Jeong-Young;Choi, Eun-Ho;Bae, Won-Byong;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Temperature control of a rubber injection mold is important for the dimensional accuracy of product. The main objective of this paper is to optimize the arrangement of heaters by FEM and optimal design method. Firstly, 3-dimensional transient heat transfer analysis was carried out for a square specimen mold. Results of FE analysis are a good agreement with the experimental results, showing about 1.22~7.22% error in temperature distribution. Secondly, we suggested the optimal method about an arrangement of heaters of rubber injection mold by using the optimal design technique. Distances between heater's center and the contact surface of mold, distances between heater's center and symmetric surface were considered as design variables. And the variances between the temperatures of cavity surfaces and their average temperature were used as the objective functions. Applying the optimal solution, the temperature variation was improved about 52.9~88.1 % compared to the existing mold. As a result of sensitivity analysis for design variables, design variables parallel to the direction of the split plane in mold affect the largest on the surface temperature variation in mold cavity.

Aspherical Lens Design and Injection Mold Analysis Using Extracted Shape Information (형상정보 추출을 통한 비구면 렌즈 설계 및 성형해석에 관한 연구)

  • Song, K. H.;Kim, B. C.;Yoon, H. S.;Yang, J. K.;Kim, K. B.;Xiao, H.;Cho, M. W.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.437-442
    • /
    • 2015
  • The development of polishing technology has enabled the production of injection molds with high quality surfaces and shapes. For products such as mobile phones which require high quality performance the use of plastic materials has many constraints such as shrinkage and deflection. The purpose of the current research is to use reverse engineering in order to find and analyze the data of a selected aspherical lens and then creating a process to design an improved lens. Additionally, the improved lenses are subject to molding analysis. In order to solve this problem, the lens construction program, Zemax, was used to analyze and optimize performance. In the case of optimization, the object was to eliminate spherical aberration and to find good MTF data. The result of the optimization data was similar to the MTF data found from a random lens. Specific resin and analysis conditions were selected and CAD modeling was done to enhance the injection molding analysis.

Estimation of Process Parameters Using QFD and Neural Networks in Injection Molding (품질기능전개와 신경망 회로를 이용한 사출성형 공정변수의 예측)

  • Koh, Bum-Wok;Kim, Jong-Seong;Choi, Hoo-Gon
    • IE interfaces
    • /
    • v.21 no.2
    • /
    • pp.221-228
    • /
    • 2008
  • The injection molding process is able to produce high precision manufactures as a single process with fast speed. However, the prices of both the mold and the molding machine are expensive, and the single process is very complex and difficult to compose of the exact relationship between the process setting conditions and the product quality. Therefore, the quality of a molded product often depends on a skillful engineer's operations in the design of both parts and molds. In this paper, the relationship between the process conditions and the defectiveness is built for better manufactures under settings of the appropriate parameters, and so it can reduce the setup time in the injection molding process. Quality Function Deployment (QFD) provides severe defectiveness factors along with the related process parameters. Also, neural networks estimate the relationship between defective factors and process setting parameters, and lead to reduce the defectiveness of molded parts.

Study on Heterojunction Injection Pulley Fabrication for Development of a High-Strength and Light-Weight Industrial Pulley (고강도 경량화 산업용 풀리 개발을 위한 이종접합 사출풀리 제작에 관한 연구)

  • You, Kwan-jong;Bae, Sung-ryong;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-81
    • /
    • 2019
  • In the mold-manufacturing field, various methods of advanced production technology are being used in the production of industrial-grade gear pulleys. Among the current methods are injection molding, hoop molding, insight molding, two-material molding, compound-mold molding, as well as engineering plastic mold. Currently, casting pulleys are inexpensive because they are produced in small quantities. However, they produce complications during the manufacturing process, are very unreasonable for mass production, and are disadvantageous in cost competitiveness. Pulleys are divided into hundreds of kinds and thousands of kinds, so the production methods vary. As these pulleys are made of a single material by a casting and welding method, they are not manufactured using injection molds consisting of different materials. In this research, pulleys, shafts, and reinforced plastic materials were incorporated using ANSYS software, and a low-cost, lightweight technology was applied for trial production with optimum design and extrusion technology.

A Study on the ERP system Module for the plastic injection molds (WEB형 플라스틱사출 금형 견적 산출 ERP시스템 모듈연구)

  • Choi Sung;Ryu Jung-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.263-266
    • /
    • 2005
  • 본 연구는 플라스틱 사출 금형 견적 산출 전문가 시스템모듈에 관한 내용이다. 일반적으로 경험에 의한 견적 산출은 프라스틱 사출 금형 제조 회사의 경험이 많은 엔지니어가 직접 작성하게 된다. 이렇게 되면, 시간은 많이 소요되지 않지만, 객관성과 과학성이 결여된 견적이 산출된다. 때때로, 고객과 제조회사 간의 분쟁이 발생하게 되는 원인이 되기도 한다. 이러한 문제를 극복하기 위해, 본 연구로 개발된 시스템이 대안이 될 것이다.

  • PDF

Micro Genetic Algorithms in Structural Optimization and Their Applications (마이크로 유전알고리즘을 이용한 구조최적설계 및 응용에 관한 연구)

  • 김종헌;이종수;이형주;구본홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.225-232
    • /
    • 2002
  • Simple genetic algorithm(SGA) has been used to optimize a lot of structural optimization problems because it can optimize non-linear problems and obtain the global solution. But, because of large evolving populations during many generations, it takes a long time to calculate fitness. Therefore this paper applied micro-genetic algorithm(μ -GA) to structural optimization and compared results of μ -GA with results of SGA. Additionally, the Paper applied μ -GA to gate optimization problem for injection molds by using simulation program CAPA.

  • PDF

Methodology for Variable Optimization in Injection Molding Process (사출 성형 공정에서의 변수 최적화 방법론)

  • Jung, Young Jin;Kang, Tae Ho;Park, Jeong In;Cho, Joong Yeon;Hong, Ji Soo;Kang, Sung Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.1
    • /
    • pp.43-56
    • /
    • 2024
  • Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.

On the new mold structure with multi-point gate for filling-balance mold (다점 핀포인트 금형에서 균형충전이 가능한 사출금형 구조)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.25-29
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and ploymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was desreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

  • PDF

A study on plastic mold design for robot shape and mold manufacture (로봇형상 플라스틱금형설계 및 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.64-69
    • /
    • 2012
  • This study looks at plastic mold design for robots and mold manufacture, which is an injection mold branch at The Korea-China-Japan University Grand Prize Contest. Product analysis and layout, molding analysis, and upper and lower core design are carried out to design molds in 2D and 3D. After the design of the cores, NC machining software is used for simulation before actual manufacture. Before the production of end-product, test injection is done to troubleshoot problems like bad dimensions, burr, cracks and stepped pulley.

  • PDF