This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.
In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.
In the present study, the injection molding optimization of a large thick LH type elastic frames for the reduction of warpage was performed. Two kinds of fine and coarse finite element models were prepared to investigate the efficiency of analysis time and quality on simulation results. In order to derive injection molding conditions that can minimize distortion of parts, it was investigated that the effects of mold temperature, resin temperature, injection time, hold pressure switching time, holding pressure and the hold time on deformation characteristics using the design of experiments. The main influential factors on the warpage were found from the optimization simulation and the geometry data of the warpage result was converted into an initial model for injection simulation. It was shown that a coarse model with good mesh quality could be adapted for mold design since the total analysis time using the proposed model was reduced to 1/10. The suggested inversed warpage model produced the best minimized result of warpage.
Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.
Kim, Jin-Ki;Song, Jin-Kwan;Kim, Min-Ki;Yoon, Young-Bin;Hwang, Yong-Seok
Journal of ILASS-Korea
/
v.13
no.2
/
pp.99-106
/
2008
In this study, spray characteristics research of steady/pulsed injection in crossflow was performed experimentally in the model ramjet combustor. High-speed-camera photography was performed through a visualization window of model combustor, and then, steady and pulsed spray structures were observed and analyzed. Varying influx air temperature and fuel species, we could obtain the trajectory correlation in the steady injection case. In the experiment of pulsed injection, it is found that the pulsed frequency hardly influences spray trajectory. Also, it is found that, in the same injection pressure differential, the trajectory correlation of steady condition can be used for estimating pulsed spray trajectory.
The purpose of this paper is to introduce a fusion method that combines the design of experiments (DOE) and machine learning to optimize the bias of plastic products. The study focuses on the plastic motor housing used in automobiles, which is manufactured through plastic injection molding. Achieving optimal molding for the motor housing involves the optimization of various molding conditions, including injection pressure, injection time, holding pressure, mold temperature, and cooling time. Failure to optimize these conditions can lead to increased product deformation. To minimize the deformation of the motor housing, the widely used Taguchi method, which is one of the design of experiment techniques, was employed to identify the injection molding conditions that affect deformation. Machine learning was then applied to various models based on the identified molding conditions. Among the models, the Random Forest model emerged as the most effective in predicting deformation amounts. The validity of the Random Forest model was also confirmed through verification. The verification results demonstrated the excellent prediction accuracy of the trained Random Forest model. By utilizing the validated model, molding conditions that minimize deformation were determined. Implementation of these optimal molding conditions led to a reduction of approximately 5.3% in deformation compared to the conditions before optimization. It is noteworthy that all injection molding outcomes presented in this paper were obtained through robust injection molding simulations, ensuring both research objectivity and speed.
This experiment has investigated the influence of Yamen (Du. 15) point injection on learning and memory dysfunction caused by cerebral ischemia and reprofusion in bilateral cervical general artery combined with bleeding on mouse tail to mimic vascular dementia in human beings. By dividing 40 mice into 4 groups (group1false operation group, group2model group, group3point injection with Cerebrolysin group4point injection with saline.) According to random dividing principles, we observed the influence of Yamen(Du. 15) point injection on the time of swimming the whole course used by model mice which had received treatment for different days in different groups, and the influence of those mice on wrong times they entered blind end. The result showed that point injection with Cerebrolysin and saline could improve learning and memory dysfunction of the mice caused by cerebral ischemia.
Designers are frequently faced with multiple quality issues in injection molded parts. These issues are usually In conflict with each other, and thus tradeoff needs to be made to reach a final compromised solutions. The objective of this study is to develop an automated injection molding design methodology, whereby part defects such as warpage and weld line are optimized. The features of the proposed methodology are as follows: first, Utility Function approach is applied to transform the original multiple objective problem into single objective problem. Second is an implementation of a direct search-based Injection molding optimization procedure with automated consideration of process variation. The Space Reduction Method based on Taguchi's DOE(Design Of Experiment) is used as a general optimization tool in this study. The computational experimental verification of the methodology was partially carried out for a can model of Cavallero Plastics Incorporation, U. S. A. Applied to production, this study will be of immense value to companies in reducing the product development time and enhancing the product quality.
Spray impingement model and fuel film formation model were developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process were modelled by considering the change of behaviour with surface temperature condition and fuel film formation. We divided behaviour of fuel droplets after impingement into stick, rebound and splash using Weber number and parameter K. Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. A fuel film formation model was developed by Integrating the continuity, the Navier-Stokes and the energy equations along the direction of fuel film thickness. The validation of the model was conducted using diesel spray experimental data and gasoline spray impingement experiment. In all cases, the prediction compared reasonably well with experimental results. Spray impingement model and fuel film formation model have been applied to a direct injection diesel engine combustion chamber.
In this study, numerical analysis and model experiments were conducted to analyze behavioral characteristics acting on the track roadbed with excavation through steel pipe injection, a non-exclusive method of crossing construction under railroad as primary target. In model experiments that simulate injection excavation behaviors with an increase in the depth of soil cover, the upper displacement was measured by construction of the first and the second pipes in order to predict actual behaviors, and the behavior characteristics were verified through numerical analysis. The investigation results showed that surface displacement was smaller under the condition of higher soil cover. In the case of injecting two pipes, when the first pipe was injected, deformation of the surface increased linearly in both settlement and uplift experiments. However, when the second pipe was injected, the amount of change was found to be very small due to the relaxation and plastic zones around the first pipe. In addition, the results of numerical analysis on the same cross section with the model experiment found that the results of investigation into settlement ratio and volume loss were in very good agreement with those obtained by the model experiment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.