• Title/Summary/Keyword: Injection forging

Search Result 14, Processing Time 0.019 seconds

A Study on Die Forging of a Hollow T-shaped Part (중공 T형상의 형단조에 관한 연구)

  • 김현수;김용조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Traditional forging of a hollow T-shaped part has been applied to forge a solid T-shaped product from a solid billet and then to machine the hollow in that. In a case, a hollow T-shaped part can be forged by backward-extruding from a solid billet. In this study, four types of forging were suggested for manufacture of hollow T-shaped parts. Forging simulations for each of these forging methods were carried out to investigate folding defect, metal flow pattern, effective strain, and forging loads. Experimental works were carried out to be compared with the simulation results. Here, the ratio of the thickness of the hollow tube to that of the flange was selected to investigate a forging defect like folding.

형상비를 고려한 중공 플랜지의 밀폐단조 해석

  • 김현수;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.190-190
    • /
    • 2003
  • 동력 전달용 구동부품에 있어서 중공 플랜지 형상의 부품은 흔히 찾아 볼 수 있으며, 이는 높은 강도를 요구하기 때문에 강도향상을 위하여 단조에 의한 제품의 성형 방법이 많이 연구되고 있다. 중공 플랜지형상을 갖는 제품의 제조 방법으로서는 중실 플랜지 형상으로 단조하여 내경부를 절삭가공하는 방법, 중실 소재를 후방압출하여 중공 플랜지형상으로 단조하는 방법, 또는 중공의 초기소재를 사용하여 중공 플랜지형상으로 단조하는 방법이 일반적이다. 본 연구에서는 Fig. 1에 나타낸 것과 같이 중공 플랜지 형상을 갖는 기계 부품의 단조방법에 대해 연구하였으며, 중공 관의 내경을 $d^1$, 외경을 $d^2$, 플랜지부의 외경을 $D^0$, 중공 관의 두께를 t, 플랜지부의 두께를 T로 정의하였다. 중공 플랜지 형상에 있어서 공정 설계의 변수는 다양하겠으나, 본 연구에서는 중공관의 외경과 내경의 형상비 $\alpha$(=$d^2$/$d^1$), 플랜지의 폭과 중공관의 두께비 $\beta$(=B/t) 및 중공관의 두께와 플랜지의 두께비 r(=T/t)의 변화에 따른 성형조건에 관해 고찰하였다. 중공 플랜지 형상의 성형방법으로 Fig. 2에 나타낸 것과 같은 $\circled1$중실소재를 이용한 후방압출단조(backward extrusion forging)방법, $\circled2$중공 소재를 이용한 엎셋(upset forging)방법, $\circled3$중공 소재를 이용한 압조법(injection forging), $\circled4$중실소재를 이용한 압조-압출(injection-extruding forging)법의 4가지의 단조 방법을 제시 하였다. 또한, 유한요소해석을 수행하여 소성유동 형태, 유효변형률, 단조하중을 검토하고. 모델재료인 납을 이용한 실험을 통하여 이를 검증하였다. 이를 바탕으로 산업 현장에서 경험에 의존하였던 공정 설계를 보다 효과적으로 개선하기 위한 단조법을 제시하고자 하였다. 또한 중실 소재를 이용한 중공 플랜지 형상의 단조 방법 중 보다 적절한 단조방법인 압조 단조에 있어서 일반적으로 사용되고 있는 SM10C에 대한 유한요소 해석을 수행하였으며, 제품의 형상비에 따라 폴딩 결함의 발생 유무를 검토하고, 폴딩 결함 없이 단조하기 위한 중공 플랜지의 형상한계 비를 제시하였다.

  • PDF

A Study on the Optimization of Articulated Steel Forging Piston and 3D Analysis of Fluid Characteristics for Light Duty DI Diesel Engine (직접분사식 소형 디젤엔진의 3D 유동특성 및 분절형 스틸 단조 피스톤의 최적화에 관한 연구)

  • 김현철;박종호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.25-31
    • /
    • 2004
  • In order to prepare for the large power diesel vehicle, the current trend of advanced nations is to shift from the aluminum alloy piston to the steel piston. In this research, a steel forging piston which replaces the aluminum alloy piston is developed to improve the power performance of the diesel engine. The three dimensional flow and combustion analysis of the target engine is conducted. Using the result of the analysis, the piston is optimized, and a prototype of the articulated steel forging piston is built. The reliability of the piston has been evaluated through durability test using a Hydropuls Test Machine for 300,000 km.

The Effect of Gate Shape for Semi-Solid Forging Die on the Filling Limitation (반용융 단조금형의 Gate 형상이 성형성에 미치는 영향)

  • Son Y. I.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.178-184
    • /
    • 2000
  • To obtain high quality component with thixoforming process, it is important that the homegeneous distribution of solid particles without liquid segregation. In closed-die semi-solid forging process, liquid segregation is strongly affected by injection velocity than any other process variables because the material has to travel relatively long distance to fill the cavity through a narrow gate before solidification begins. The optimal injection velocity and die temperature were investigated to fabricate near-net-shape compressor component called Al frame.

  • PDF

Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials (경량화 소재의 반용융 및 주조/단조기술)

  • 강충길;최재찬;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF

Defect Prediction in Part Fabrication Process of Metal Matrix Composites by Thixoforging Process (Thixoforging을 이용한 중공형 금속복합재료 부품의 성형공정에 있어서 결함예측)

  • 윤성원;김병민;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.102-109
    • /
    • 2003
  • In the manufacturing process of metal matrix composites parts, thixoforging is one of the most effective forming processes. The major purpose of the current study is to provide the proper conditions such as the die shape, the forging velocity, the forging time, the forging pressure and reinforcement injection velocity and pressure on various defects in thixoforged cylinder liner, filling tests were performed by MAGMA S/W. In order to evaluate the effectiveness of the calculated conditions which is given by computer aided engineering, A357, A380 and SiC$_{p}$/A380 cylind~5$mu extrm{m}$r liner were fabricated under the calculated conditions. SiC$_{p}$/A380 composite billets were fabricated by both the mechanical stirring and electrical magnetic stirring process. Incase fo SiC$_{p}$/A380 composite cylinder liner, reinforcement distribution and effect of reinforcement(SiC$_{p}$) content(10~20 vol. %)and size(5.5~14${\mu}{\textrm}{m}$) on the mechanical properties were investigatedstigated.

The Effects of Fabrication Conditions on Forging Limitation and Mechanical Property in Semi-Solid Forming Process (반용융 단조공정에 있어서 제조 조건이 성형성과 기계적 성질에 미치는 영향)

  • 정경득;강충길
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.214-222
    • /
    • 2001
  • The homogeneous distribution of solid region without liquid segregation is important in terms of high quality component during thixoforming process. In closed die semi-solid forging process, liquid segregation is strongly affected by injection velocity than solid fraction because the material has to travel relatively long distance to fill the cavity through a narrow gate. The designed die by computer simulation data was used to thixoforging process. The thixoforming velocity to prediction the liquid segregation had been determined with strain rate associated with multistage velocity control during compression test of semi-solid material. The optimal forging velocity and die temperature were investigated to produce the near-net-shape compressor component. The mechanical properties of thixoformed component were tested with various die and material temperatures before and after heat treatment.

  • PDF

An Experimental Study on Durability Performance of Aluminum Alloy Piston and Steel Forging Piston (알루미늄 합금 피스톤과 스틸 단조 피스톤의 내구성능에 관한 실험적 연구)

  • Kim, Hyun-Chul;Lee, Jong-In;Park, Jong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.54-59
    • /
    • 2004
  • The goal of this research is to confirm reliable durability and evaluate the engine performance of the current aluminum alloy piston and the newly developed steel forging piston. For such purpose, the test environment was built with 2.91 target engine mounted on the engine dynamometer and additional exhaust gas analysis system. Using the test environment, engine performance test was conducted, and durability test was also conducted using a dedicated piston durability test equipment for 400,000 km. As a result of the experiment, similar durability was appeared for both aluminum piston and steel piston, and the engine output power and torque are slightly reduced because of $158\%$ heavier weight of the steel piston compare to the aluminum alloy piston.

A Study on the Injection Molding Process for Manufacturing of Alternator Pulley (얼터네이터 풀리의 제조를 위한 사출성형공정에 관한 연구)

  • 민병현;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • So far, an alternator pulley has been formed by cold forging and casting with a metal due to the necessity of its high strength. Various advantages such as the light weight, the low cost, and the high productivity can be obtained by the injection molding process using engineering plastics. Engineering plastics have an excellent performance in the characteristics off strength vs. weight, a good forming ability and a productivity. The object of this study is to develop an alternator pulley, which has been made with a metal, using the injection molding process based on Taguchi methods. A sink mark is considered as a characteristic parameter to improve the quality. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.

Prediction of Sink Phenomenon during Forging Process and Improvement of LPI Fuel Filter Housing Forging Product (LPI 차량용 연료필터 상부 하우징 냉간 단조 성형 공정에서 sink 현상 예측 및 개선)

  • Kim, Jun-Young;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.395-399
    • /
    • 2017
  • The LPI fuel filter housings used in automobiles were made from conventional die castings but have recently been developed by cold forging to improve the weight and durability. On the other hand, a sink may develop at the core of the forged product due to the resulting T-shape, which not only reduces the aesthetics, but also increases the post-processing cost of the product. Therefore, this research focused on methods to predict and mitigate sink development and progression during the T-shape forging process. Finite element analysis of the forging process was first performed to determine the optimal initial workpiece devoid of burrs and underfills. An accurate sink prediction was then obtained via metal flow analysis, which was a result of the finite element simulation. Through finite element analysis, it was confirmed that sink development is a product of the differences in nodal velocities arising from the T-shaped forging process. Consequently, a pad was inserted beneath the sink to minimize these velocity differences. The results yielded significant improvement with regard to the sink defect. This method was practically applied to an industrial site to validate the sink improvement.