• Title/Summary/Keyword: Injection analysis

Search Result 3,053, Processing Time 0.042 seconds

Study of Pulse Generation Technique for Serial dual Electrode Detection of Amino Acids and Proteins in Flow Injection Analysis

  • Fung, Ying-Sing;Mo, Song-Ying
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.575-582
    • /
    • 1995
  • A new analytical procedure using a serial dual electrode detector was developed for the analysis of amino acids and proteins. Bromine was generated at the upstream electrode and detected by the downstream electrode. The presence of amino acids and proteins was shown to lower the downstream current but with no apparent effect on the upstream current. This indirect mode of detection can be applied to the determination of amino acids and proteins which are electrochemically inactive or too large to be accessible to the electrode surface for electron exchange. The method is shown capable to determine various amino acids (cystine, tyrosine, lysine, tryptophan, glycine, methionine and arginine) and proteins (cytochrome c, hemoglobin, HAS, a-Amylase, Conalbumin I, Catalase and Myglobin) with linear working range for amino acids between $10^{-6}$ to $10^{-3}M$ and total proteins between $10^{-7}$ to $10^{-3}M$. The method has been applied for the analysis of amino acids and total protein in food using Flow Injection Analysis with results obtained comparable to those using the traditional analytical procedure. Use of pulse generation technique was shown to produce a more stable flow injection analysis peaks for repetitive determination than the use of conventional constant current method which showed increase of the background current after determination over 200 minutes. The pulse method was found to give stable baseline even after 400 minutes. Thus, the method is shown able to provide a suitable analytical procedure for automatic analysis of amino acids and proteins in food by flow injection analysis.

  • PDF

Integrated Numerical Analysis of Induction-Heating-Aided Injection Molding Under Interactive Temperature Boundary Conditions (열-유동 상호작용을 고려한 유도가열 적용 미세 사출성형의 통합적 수치해석)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.575-582
    • /
    • 2010
  • In recent years, several rapid-mold-heating techniques that can be used for the injection molding of thin-walled parts or micro/nano structures have been developed. High-frequency induction heating, which involves heating by electromagnetic induction, is an efficient method for the rapid heating of mold surfaces. The present study proposes an integrated numerical model of the high-frequency induction heating process and the resulting injection molding process. To take into account the effects of thermal boundary conditions in induction heating, we carry out a fully integrated numerical analysis that combines electromagnetic field calculation, heat transfer analysis, and injection molding simulation. The proposed integrated simulation is extended to the injection molding of a thin-wall part, and the simulation results are compared with the experimental findings. The validity of the proposed simulation is discussed according to the ways of the boundary condition imposition.

A Basic Study on the Standardization of Epoxy Injection on Concrete Structure Crack (콘크리트 구조물 균열에 에폭시 주입의 표준화를 위한 기초적 연구)

  • Baek, Jong-Myeong;Jang, Seog-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • Repairing concrete structures depended on only technician' experience without quality test standards would have problems. For solving those problems, this paper has analyzed the relations between injection quantify and crack width, injection time and crack width, injection pressure and crack width, injection pressure/time and crack width, injection quantity and structure size, injection quantify and individual crack Position, injection time and crack width/structure thickness. The data gained from this analysis would be helpful for systematic quality control of repairing concrete structures.

Pore network approach to evaluate the injection characteristics of biopolymer solution into soil

  • Jae-Eun Ryou;Beomjoo Yang;Won-Taek Hong;Jongwon Jung
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.51-62
    • /
    • 2024
  • Application of biopolymers to improve the mechanical properties of soils has been extensively reported. However, a comprehensive understanding of various engineering applications is necessary to enhance their effectiveness. While numerous experimental studies have investigated the use of biopolymers as injection materials, a detailed understanding of their injection behavior in soil through numerical analyses is lacking. This study aimed to address this gap by employing pore network modeling techniques to analyze the injection characteristics of biopolymer solutions in soil. A pore network was constructed from computed tomography images of Ottawa 20-30 sand. Fluid flow simulations incorporated power-law parameters and governing equations to account for the viscosity characteristics of biopolymers. Agar gum was selected as the biopolymer for analysis, and its injection characteristics were evaluated in terms of concentration and pore-size distribution. Results indicate that the viscosity properties of biopolymer solutions significantly influence the injection characteristics, particularly concerning concentration and injection pressure. Furthermore, notable trends in injection characteristics were observed based on pore size and distribution. Importantly, in contrast to previous studies, meaningful correlations were established between the viscosity of the injected fluid, injection pressure, and injection distance. Thus, this study introduces a novel methodology for integrating pore network construction and fluid flow characteristics into biopolymer injections, with potential applications in optimizing field injections such as permeation grouting.

Injection mold Design Optimization using Regression Analysis (회귀분석을 이용한 사출금형 설계 최적화)

  • Ryu M.R.;Kim Y.H.;Lee S.J.;Lee K.H.;Park H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.657-660
    • /
    • 2005
  • It is net easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by suing the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum average shrinkage by regression analysis. The results shown that coefficient of determination of regression equation has a fine reliability over 88.3% and regression equation of average shrinkage is made by regression analysis.

  • PDF

Research on Gas Injection Mold using CAE Analysis of Steering wheel Parts (자동차핸들 제품의 CAE해석을 활용한 가스 사출성형에 관한연구)

  • Kang, Sae-Ho;Woo, Chang-Ki;Kim, Ok-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7729-7735
    • /
    • 2015
  • As plastic injection mold parts is suitable system mass production making mold. So thick steering wheel parts is desirable to carry out gas injection molding. Gas injection mold is skill to inject nitrogen gas postfilling melting raw material into mold. Gas injection mold have many advantage like retrenchment of material cost, upgrading the guality. etc. It was decided gate position to minimize warpage of parts analysis injection mold process using mold flow software and incase doing gas injection mold using normal p.p material. it occur big warpage. so it is object minimizing warpage of injection parts to change p.p material containing mineral 18% and removing fingering phenomenon trouble as changing gate position. Also in case carrying out gas injection mold, I did comparison and analysis to grasp shape flow in gas setting a standard gate after flowing in raw material. Through this study, I found out changing of thickness by parts shape and it can occur warpage of parts by plastic material even though it carry out gas injection mold and it had a direct influence on trouble of parts by gate position.

DEVELOPMENT OF AN OPERATION STRATEGY FOR A HYBRID SAFETY INJECTION TANK WITH AN ACTIVE SYSTEM

  • JEON, IN SEOP;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.443-453
    • /
    • 2015
  • A hybrid safety injection tank (H-SIT) can enhance the capability of an advanced power reactor plus (APR+) during a station black out (SBO) that is accompanied by a severe accident. It may a useful alternative to an electric motor. The operations strategy of the H-SIT has to be investigated to achieve maximum utilization of its function. In this study, the master logic diagram (i.e., an analysis for identifying the differences between an H-SIT and a safety injection pump) and an accident case classification were used to determine the parameters of the H-SIT operation. The conditions that require the use of an H-SIT were determined using a decision-making process. The proper timing for using an H-SIT was also analyzed by using the Multi-dimensional Analysis of Reactor Safety (MARS) 1.3 code (Korea Atomic Energy Research Institute, Daejeon, South Korea). The operation strategy analysis indicates that a H-SIT can mitigate five types of failure: (1) failure of the safety injection pump, (2) failure of the passive auxiliary feedwater system, (3) failure of the depressurization system, (4) failure of the shutdown cooling pump (SCP), and (5) failure of the recirculation system. The results of the MARS code demonstrate that the time allowed for recovery can be extended when using an H-SIT, compared with the same situation in which an H-SIT is not used. Based on the results, the use of an H-SIT is recommended, especially after the pilot-operated safety relief valve (POSRV) is opened.

A study on passenger air bag housing by injection molding analysis (자동차 승객용 에어백 하우징의 사출성형 해석 연구)

  • Choi, Doo-Yeol;Park, Jae-Il;Hong, Seok-Moo;Choi, Kye-Kwang;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.9-13
    • /
    • 2015
  • Plastic material has been applied to many automobile parts with the automotive lightweighting trend. In this study, a passenger air bag(PAB) housing which is produced by steel material in the present were molded using a plastics material. Before design and making of a mold for the PAB housing molding, it was carried out injection molding analysis. By analyzing the deformation results, the correction dimension for mold designing was determined. The design and manufacturing the mold applied the correction dimension were conducted. It was performed actual injection molding. The warpage value of the PAB housing was similar to the warpage of the injection molding analysis.

  • PDF

Stability Analysis of Upper Structures by Soil Grouting (지반 그라우팅에 의한 상부구조물의 안전성 분석)

  • Hwang, Chulsung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.58-65
    • /
    • 2013
  • Transportation and further expansion of social infrastructure was needed along the development of urbanization and population concentration. To use the underground space due to the lack of availability of land, it is inevitable to intersect between present structure and tunnel during construction. Soil grouting is one of the ground improvement methods to reinforce weak soil around the underground structures by injection of grouting liquid. Some of central columns of an upper structure are damaged during injection of grouting liquid by injection pressure. To investigate and improve the stability of the tunnel, three dimensional analysis are performed with full construction stages which includes the construction of present underpass, damaging columns of the underpass, reinforcing the columns by H-pile and shear walls, and excavation and construct tunnel. The arrangement of grouting holes such as curtain and horizontal type affects largely to the stability of upper structure and horizontal arrangement diminish the shear forces which is the cause of damage of central columns. The liquid injection type of reinforcement for tunnel is not recommended while the presence of upper structure with columns. Wall type reinforcing is utilize for permant support of upper structures which is affected by grouting injection pressure. H-pile is utilize for temporary support, but not for permanent since the sharing of shear forces is not much to shear wall during tunnel construction.