• Title/Summary/Keyword: Injection analysis

Search Result 3,053, Processing Time 0.029 seconds

A study on the blood collecting device of main shaft injection molding for measuring blood glucose by CAE analysis (혈당 측정을 위한 채혈기구 메인 샤프트의 사출성형 시뮬레이션 및 시 사출에 관한 연구)

  • Baek, Seung Yub
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • In diabetics, daily blood glucose testing is generally required at home, and thus, performing blood collection several times a day using a blood line is essential. Blood collection in the home and in the hospital is a source of pain and is the second most common cause of infection. In blood collecting device generally consists of four major parts: inner-case, outer case, main shaft and triger, and the most import part among those for necessary functionality is the main shaft. Filling time and injection pressure, filling balance, strain-rate analysis of change based on availability of the product. The Moldflow of FEM simulation is used for the analysis of injection molding process. In this study, aims to create a technique for injection molding and manufacturing of a main shaft of a high-performance blood-collecting apparatus capable of automatically extracting a lancet to relieve pain through depth control of the lancet.

Optimization of an Electron Microwave Oven Window Injection Mold Using Kriging Based Approximation Model (크리깅을 이용한 전자 오븐 윈도우 부품용 사출금형의 최적설계)

  • Ryu M. R.;Lee K. H.;Kim Y. H.;Park H. S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.177-184
    • /
    • 2005
  • Recently, the engineering designer of injection mould has become more and more dependent on the CAE. In the design factors of injection mould, the shrinkage rate should be considered as one of the important performances to produce the reliable products. therefore the shrinkage rate can be mostly calculated by the MoldFlow and Pro-engineering. in the design process. However it is not easy to predict the shrinkage rate of a plastic injection mold in its design process because the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models, DACE model, based on the Kriging in order to optimize the shrinkage rate of electric microwave oven window is used in lieu of the original models, facilitating design optimization.

A study on a structural analysis of the injection mold for the plastic subminiature barrel (모바일용 플라스틱 경통 금형의 구조해석에 관한 연구)

  • Chang, Sung-Ho;Heo, Young-Moo;Shin, Gwang-Ho
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.10-15
    • /
    • 2008
  • Recently, mobile-phone with camera module has an absolute majority in the released mobile-phones. For this trend, High precision of the plastic subminiature barrel which is the core part is needed significantly because the camera module of mobile-phone must have high performance. Therefore, Structural stability of the injection mold for plastic subminiature barrel has to be guaranteed. In this paper, structural analysis of injection mold for plastic subminiature barrel is performed. Finally, the deformation trend and stability of injection mold core are analyzed.

  • PDF

Injection Moulding of Polyetherimide Axi-Symmetric Elements (PEI계 플라스틱 축대칭 부품의 사출 성형에 관한 연구)

  • 하영욱;정태형;이범재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.68-74
    • /
    • 2002
  • This research covers the development of axi-symmetric plastic elements for injection molding with insert steel such as high stiffness Sabot. The functional requirements of sabot are concentricity and fracture resistance about vertical and horizontal forces. For these, an analysis of characteristics of PEI(polyetherimide) polymer is performed by standard test specimen with accordance of ASTM test guidance. Moldflow analysis and simulation of injection molding process are carried out in order not only to estimate of the warpage but also to predict the characteristics of residual stresses which both product and structure of mold may have. A new vertical side injection machine and transverse mold have been constructed. Results of the measuring concentricity and fracture test after molding of sabot are satisfied to design specification over Cp $ratio{\geq}1.33$. Finally, this technique needs more research application to others axi-symmetric elements having different radius with insert steel md structure analysis from now on.

Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Beating (급속 가열에 의한 박육 사출성형의 유동특성 개선)

  • Kim, Byung;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.9-12
    • /
    • 2005
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filing difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation fur both the conventional molding and the RTR molding processes

  • PDF

Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold (고주파유도 급속 금형가열 과정의 3차원 유한요소해석)

  • Sohn, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

Comparison of Extracorporeal Shock Wave Therapy Versus Injection Therapy for Shoulder Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

  • Dajeong Kim;Hyunjoong Kim
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • Objective: The purpose of this study is to compare the effects of extracorporeal shock wave therapy (ESWT) and injection therapy through qualitative and quantitative analysis by synthesizing randomized controlled trials (RCTs) conducted on patients with various shoulder diseases. Design: A systematic review and meta-analysis of randomized controlled trials Methods: This review conducted a literature search through international electronic databases in January 2023 to compare the effects of ESWT and injection therapy. Qualitative analysis was performed as a risk of bias tool, and quantitative analysis was synthesized with a random effect model to show the effect size as a standardized mean difference (SMD). Results: Five RCTs involving 298 individuals with shoulder disorders were included in this systematic review and meta-analysis. ESWT showed a moderate effect on pain (SMD=-0.44; 95% CI, -0.95 to 0.06) and a large effect on shoulder function (SMD =-0.81; 95% CI, -1.70 to 0.07) than injection therapy. A significant difference was found in the shoulder range of motion, showing a large effect size (SMD=1.50; 95% CI, 0.58 to 2.43). Conclusions: When considering treatment options for the management of patients complaining of shoulder disorders, it is appropriate to recommend ESWT first rather than injection therapy to increase the range of motion of the joint. In addition, ESWT is safe for pain control and shoulder function improvement, and a positive prognosis could be expected.

A Study on the Design of Cooling Channels of Injection Mould to Manufacture a Flat Part with a Partly Thick Volume (부분적으로 후육부를 가지는 평판형 제품의 제작을 위한 사출성형 금형의 냉각채널 설계에 관한 연구)

  • Ahn, Dong-Gyu;Park, Min-Woo;Kim, Hyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.824-833
    • /
    • 2012
  • The shrinkage and the warpage of the moulded part are influenced by the design of the product and injection mould. In a flat part with a partly thick volume, the warpage of the flat part is created from the difference of the shrinkage between thin and thick regions. The warpage of the flat part with a partly thick volume can be reduced by a proper design of the cooling system in the injection mould. The goal of this paper is to design properly cooling channels of injection mould to manufacture a flat part with a partly thick volume. The conformal cooling channel is adopted to improve cooling characteristics of a region with the thick volume. The linear cooling channels are assigned to the other region. The proper design of the conformal cooling channels is obtained from three-dimensional injection molding analysis for various design alternatives. The moulding characteristics of the designed mould with both conformal and linear cooling channels are compared to those of the mould with linear cooling channels from viewpoints of temperature, shrinkage and warpage of the moulded part using numerical analysis. Injection mould with both conformal and linear cooling channels for the flat part with a partially thick volume is fabricated. In addition, injection moulding experiments are performed using the fabricated mould. From the results of the injection moulding experiments, it has been shown that the designed mould can successfully fabricate the flat part with a partially thick volume.

2012 Newborn Infants' Stage Protective Injection Analysis (2012년 출생아의 시기별 예방접종력 분석)

  • Kim, Jeong-Hee;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • This study is the analysis about materials (from 2012 to 2014) which was stored in the data made from the 397 infants subjects who were born in 2012, with the basis of the preventive injection management, public health care information system by using SPSS win 18.0 program. After we analyzed the present non-injection state and the non-injection reasons with the basis of each birth month, each vaccine, each injection period, we found out that 89 infants(22.4%) were the ones who were not computerized. Except the 20 infants-the ones having uncertain phone numbers and addresses, and computerization errors, 69 infants (17.4%) were the ones that didn't get injection. We guided protective injection to them by sending SMS text message and we could inject 39 infants (9.8%) of them. We could achieve the high 92.4% injection rate. we want this research to be used to try wipe out the infectious diseases in this district and be utilized as the basic materials of protective injection cost support and health care policies, etc.

A Study on the Injection Molding Analysis of the Metal Powder Material (금속분말재료의 사출 성형해석에 관한 연구)

  • Ro, Chan-Seung;Park, Jong-Nam;Jung, Han-Byul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2017
  • In this study,we conducted an injection molding analysis of metal powder materials for the development of flanges, which are necessary adapters for optical communication. The metal powder injection molding process is a technique for producing an injection molded article having a complicated shape by mixing ceramic or stainless powder and binders. It is used to produce products which require complex processing technology or for which the productivity is low. The purpose of this study is to minimize the manufacturing processing of products which are manufactured through existing mechanical processing procedures. For the injection molding analysis, we mixed stainless STS316 metal powder with binders at a ratio of 6 to 4 to make molding materials consisting of granular pellets. Then, three-dimensional modeling and meshing were carried out to obtain the optimal injection molding analysis conditions(molding temperature, melting temperature, injection time, injection temperature, injection pressure, packing time and cooling time). As a result of the analysis, it was discovered that the inlet became available 13.29 seconds after the first injection. Also, as the flowing and packing in the melt through the sprue, runner and gate were stable, it is expected that good molds can be manufactured.