• Title/Summary/Keyword: Injection Rate Shaping

Search Result 4, Processing Time 0.02 seconds

Influence of Injection Rate Shaping on Combustion and Emissions for a Medium Duty Diesel Engine

  • Benajes, J.;Molina, S.;Rudder, K. De;Rente, T.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1436-1448
    • /
    • 2006
  • This paper describes the effects of injection rate shaping on the combustion, fuel consumption and emission of $NO_x$ and soot of a medium duty diesel engine. The focus is on the influence of four different injection rate shapes, square type 1, square type 2, boot and ramp, with a variation of maximum injection pressure and start of injection (SOI). The experiments were carried out on a 1 liter single cylinder research diesel engine equipped with an amplifier-piston common rail injection system, allowing the adjustment of the injection pressure during the injection event and thus injection rate as desired. Two strategies to maintain the injected fuel mass constant were followed. One where rate shaping is applied at constant injection duration with different peak injection pressure and one strategy where rate shaping is applied at a constant peak injection pressure, but with variable injection duration. Injection rate shaping was found to have a large effect on the premixed and diffusion combustion, a significant influence on $NO_x$ emissions and depending on the followed strategy, moderate or no influence on soot emission. Only small effects on indicated fuel consumption were found.

COMMON RAIL INJECTOR MODIFIED TO ACHIEVE A MODULATION OF THE INJECTION RATE

  • FICARELLA A.;GIUFFRIDA A.;LANZAFAME R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.305-314
    • /
    • 2005
  • Injection rate shape control is one feature of a diesel fuel injection system that is strongly desired at this time. In the conventional common rail system, it is difficult to control the injection rate since the fuel pressure is constant during the injection period, resulting in a nearly rectangular rate shape. In order to look into possible injection modulations, injectors equipped with standard and geometrically modified control valves were investigated in detail by means of computer modelling and simulation. Experiments were carried out to validate the feasibility of such a shaping. The results of this study show a noteworthy dependence of the fuel rate on geometrical modifications in the piloting stage of the injector.

A Study on Determination of Economic Filling Weight in the Powder Injection Process of the Pharmaceutical Industry (제약산업의 분말 주사제 공정에서의 경제적 충진량 결정에 관한 연구)

  • 신일환;이영해
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.9-20
    • /
    • 1999
  • The standard deviation is constant in the progress of Powder Injection Filling, The setting value of the filling amount can modify the numerical rate. Since high level of the numerical rate can get the effect of reducing the material cost, it improves the productivity by permitting the possibility of the economical production. Consequently, this thesis analyzed and suggests the numerical model which consider the economical factors of the Powder Injection Shaping progress, and I try to reinforce the competitive powder of the domestic medicine manufacture industry which face the wave of globalism and evolutionism.

  • PDF

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.