• Title/Summary/Keyword: Injection Molding Lens

Search Result 93, Processing Time 0.024 seconds

One Image Analysis for 2-D Birefringence Measurements by Chromatic Aberration (색수차를 이용한 2차원 복굴절측정 장치의 개발에 관한 연구)

  • Kim, Jong-Sun;Yoon, Kyung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1761-1766
    • /
    • 2004
  • Recently, Plastic optical products are widely used. Injection molding process has advantages of low cost and high productivity. However, it remains a residual birefringence and residual stress by difference cooling. The present study focused on measuring birefringence in optical plastic parts using interference color pattern. The main idea of an analysis comes from chromatic aberration which is caused by difference light wavelengths. As a result, a complete system measuring the high order 2-D birefringence pattern was built. Further investigation is under way to improve the accuracy of birefringence measurement system by diode laser.

  • PDF

Fabrication of Silicon Nanotemplate for Polymer Nanolens Array

  • Cho, Si-Hyeong;Kim, Hyuk-Min;Lee, Jung-Hwan;Venkatesh, R. Prasanna;Rizwan, Muhammad;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • Miniaturization of lenses has been widely researched by various scientific and engineering techniques. As a result, micro scaled lens structure could be easily achieved from various fabrication techniques; nevertheless it is still challenging to make nano scaled lenses. This paper reports a novel fabrication method of silicon nanotemplate for nanolens array. The inverse structure of nanolens array was fabricated on silicon substrate by reactive ion etching (RIE) process. This technique has a flexibility to produce different tip shapes using different pattern masks. Once the silicon nano-tip array structure is well-defined using an optimized recipe, it is followed by polymer molding to duplicate nanolens array from the template. Finally, the nanostructures formed on silicon nanotemplate and polymer replica were investigated using FE-SEM and AFM measurements. The nano scaled lens can be manufactured from the same template, also using other replication techniques such as imprinting, injection molding and so on.

  • PDF

A study on deformation of LSR injection moldings having the runners with same flow distance (동일 유동거리 런너를 가진 LSR 성형품의 변형에 관한 연구)

  • Park, Jeong-Yeon;Yoon, Gil-Sang;Lee, Jeong-Won;Choi, Jong Myeong
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.60-63
    • /
    • 2013
  • Recently, Silicone that one of the thermo-sets is used to making optical products such as LED lenses because of excellent thermal properties. LED lenses are required to keep the precise dimensions, so they must be molded to have the minimum deformation. Thermo-sets have the expansion characteristic on the part of thermal property, it is important to optimize the cure condition so that the deformation of the part become minimum. In this study, to investigate the relationship between the shrinkage by the curing and expansion by the thermal properties of the resin, reactive injection experiment was performed by setting the variables such as mold setting temperature, cure time. As a result, it was confirmed that there was a interval while the thermal properties were transferred to more active during the cure process. It is expected to help in determining the reactive injection molding conditions of the thermo-set parts as well as LED lens in order to reduce the amount of deformation.

  • PDF

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

Aspherical prism lens design and manufacture of a small size and light wight EGD (비구면 프리즘 렌즈를 이용한 소형 경량의 EGD용 광학계 설계 및 제작)

  • Kim, Tae-Ha;Park, Kwang-Bum;Kim, Mi-Jung;Park, Young-Su;Kim, Hwi-Woon;Moon, Hyun-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.454-454
    • /
    • 2007
  • Eye Glass Display (EGD) with microdisplay to realize the virtual display can make the large screen, so virtual image has been developed by using microdisplay panel. This paper shows study of spherical prism lens design and manufacture of a small size and light weigh EGD with 0.59" OLED panel. Code V is used and it designed an aspherical prism lens about eye relief 25mm and 42 degree of filed of view (FOV). With the application this aspheric prism lens to OLED type's microdisplay, virtual image showed 60 inch at 2m. It had less than 2% of distortion value and modulation transfer function in axial had 30% of resolution with 32 lp/mm spatial frequency. We made an injection molding bases to lens designed.

  • PDF

Investigation of the Filling Unbalance and Dimensional Variations in Multi-Cavity Injection Molded Parts (다수 캐비티의 사출성형품에서 충전의 불균형과 성형품 치수 편차의 교찰)

  • Kang, Min-A;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.501-508
    • /
    • 2008
  • Small injection molded articles such as lens and mobile product parts are usually molded in multi-cavity mold. The problem occurring in multi-cavity molding is flow unbalance among the cavities. The flow unbalance affects the dimensions and physical properties of molded articles. First of all, the origin of flow unbalance is geometrical unbalance of the delivery system. However, even the geometry of the delivery system is well balanced, cavity unbalance occurs. This comes from the temperature distributions in the cross-section of runner. Temperature distribution depends upon injection speed because heat generation near runner wall is high at high injection speed. Among the operational conditions, injection speed is the most significant process variable affecting the filling unbalances in multi-cavity injection molding. In this study, experimental study of flow unbalance has been conducted for various injection speeds and materials. Also, the filling unbalances were compared with CAE results. The dimensions and weights of multi-cavity molded parts were examined. The results showed that the filling unbalances vary according to the injection speeds and resins. Subsequently, the unbalanced filling and pressure distribution in the multi-cavity affect the dimensions and physical states of molded parts.

Machining of LED Secondary Lens for Road Light (확산배광을 위한 가로등용 LED 2 차렌즈의 제작)

  • Joo, J.J.;Park, Sun Sub;Song, S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.43-44
    • /
    • 2012
  • 본 논문에서는 도로조명용 LED 이차광학계의 제조공정에서 발행하는 형상오차를 설계에 반영하여 제작 후 형상 정밀도를 높여 궁극적으로 도로조명의 조명율을 향상시키는 방법을 제시하였다. 이를 통하여 동일한 에너지를 소모로도 더 높은 광밀도를 가질수 있는 LED2 차렌즈의 제조방법을 제시하였다.

  • PDF

Development of Die Technology of Mobile Phone Camera Module (모바일 폰 카메라 모듈 금형기술 개발)

  • Park, Joon-Hong;Jeon, Eon-Chan;Kim, Tae-Ho;Moon, Soon-Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • Development of die technology for holder and barrel dies is necessary according to minimization of lens assembly, image sensor, and connectors. In these cases, there are two technical problems arising from die design. One is determination of knock-out pin location in die set. Minimization of lens assembly size make it difficult to obtain ejecting space. The other is whether or not high-precision die technology is possible to reduce torque variation when holer and barrel products is assembled. In this study, multi-cavity die set was developed taking advantage of gear-driven ejecting method. In the developed technology, die manufacturing technology was guaranteed with a high-precision level.

  • PDF

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

Development of Scheduler Based on Simulation for Phone Camera Lens Module Manufacturing System (폰카메라 렌즈모듈 제조시스템을 위한 시뮬레이션 기반의 스케줄러 개발)

  • Kim, Jae Hoon;Lee, Seung Woo;Lee, Dae Ryoung;Park, Chul Soon;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.131-142
    • /
    • 2014
  • Phone camera lens module is assembled with a barrel, multiple lenses, multiple spacers and a shield. The major processes of manufacturing system are injection molding, coating and assembly processes, and each process has multiple machines. In this paper, we introduce a scheduler based on simulation model which can be used for frequent rescheduling problem caused by urgent orders, breaking down of molds and failures of machines. The scheduling algorithm uses heuristic Backward-Forward method, and the objective is to minimize the number of tardy orders.