• Title/Summary/Keyword: Injected gas composition

Search Result 15, Processing Time 0.027 seconds

An Optimal Design of Gas Lift in Offshore Oil Reservoirs Considering Oil and Injected Gas Composition (해저 오일 저류층 내 오일 및 주입가스 조성에 따른 가스리프트 공법의 최적 설계)

  • Kim, Young-Min;Shin, Chang-Hoon;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.39-48
    • /
    • 2018
  • This study presents optimal design of gas lift considering composition of reservoir oil and injected gas which can affect gas lift performance in offshore oil reservoir. Reservoir simulation was conducted by using reservoir models which were built in accordance with API gravity of oil. The results of simulation reveal that oil production rate is considerably increased by gas lift when the reservoir productivity decrease. As a results of response curve analysis for gas lift using well models, gas injection rate to improve the production rate increases as the API gravity of oil decreases and the specific gravity of injected gas increases. The optimal design of gas lift was carried out using multiple lift valves. Consequently, gas lift can be operated at relatively low injection pressure because of decrease in injection depth in comparison to the single lift valve design. The improved oil production rates were analyzed by coupling between reservoir model and well model. As a results of the coupling, it is expected that natural gas injection in the heavy oil reservoir is the most efficient method for improving oil production by gas lift.

Performance evaluation of a steam injected gas turbine CHP system using biogas as fuel (바이오 가스를 연료로 사용하는 증기분사 가스터빈 열병합발전 시스템의 성능분석)

  • Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop;Hur, Kwang-Beom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.57-62
    • /
    • 2010
  • MW-class gas turbines are suitable for distributed generation systems such as community energy systems(CES). Recently, biogas is acknowledged as an alternative energy source, and its use in gas turbines is expected to increase. Steam injection is an effective way to improve performance of gas turbines. This study intended to examine the influence of injecting steam and using biogas as the fuel on the operation and performance a gas turbine combined heat and power (CHP) system. A commercial gas turbine of 6 MW class was used for this study. The primary concern of this study is a comparative analysis of system performance in a wide biogas composition range. In addition, the effect of steam temperature and injected steam rate on gas turbine and CHP performance was investigated.

Characteristics of Mercury Oxidation by an SCR Catalyst with Gas Composition (가스조성에 따른 선택적 환원촉매의 수은 산화 특성)

  • Lee, Sang-Sup;Kim, Kwang-Yul;Oh, Kwang-Joong;Jeon, Jun-Min;Kim, Do-Jeung;Kim, Ju-Yeong
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.125-132
    • /
    • 2012
  • Mercury oxidation in an SCR(selective catalytic reduction) catalyst was tested in this study with the conditions simulating the SCR system in full-scale coal-fired flue gas. A commercially available SCR catalyst was located in a temperature-controlled reactor system, and simulated gas was injected into the reactor. Mercury oxidation efficiency was determined from the difference between inlet and outlet elemental mercury concentrations. A control experiment was carried out with the gas composition of 12% $CO_{2}$, 5% $H_{2}O$, 5% $O_{2}$, 500 ppm $SO_{2}$, 400 ppm NO, 400 ppm $NH_{3}$, 5 ppm HCl, and 20 ${\mu}g/m^{3}$ Hg. Additional tests were conducted with different gas composition from the control condition to investigate the effect of gas composition on mercury oxidation in the SCR catalyst.

Effect of Gas Composition on Ozone Generation in Silent Discharge Process

  • Chung, Jae-Woo;Suh, Hyun-Hyo;Park, Hyun-Geoun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.169-175
    • /
    • 2003
  • The effect of gas composition on the discharge characteristics and the ozone production in silent discharge (SD) process was investigated. The major gas components, $N_2$, $O_2$, and $H_2O$ influence the discharge properties according to their relative magnitude of ionization thresholds and electron affinities. The generated amount of ozone increased with the discharge energy by increasing the electron mean energy. The higher oxygen content injected, the higher ozone produced. A small amount of water vapor significantly lowered the discharge onset voltage by the ionization threshold decreasing effect and high electrical conductivity. However, the further increase of water vapor contributes to decrease the electron density by the electron affinity The addition of water greatly reduced the ozone generation through the formation of OH radical and the catalytic ozone destruction process.

Estimation of Rumen Gas Volume by Dilution Technique in Sheep Given Two Silages at Different Levels of Feeding

  • Sekine, J.;Kamel, Hossam E.M.;Fadel El-Seed, Abdel Nasir M.A.;Hishinuma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.380-383
    • /
    • 2003
  • The gas dilution technique was used to evaluate the possibility of estimating the volume of gaseous phase in the rumen from its composition in sheep given rice whole crop silage (RWS) or dent corn silage (DCS) at a level of maintenance (M) or 2 M, and in the course of fasting. The rumen gas composition was determined at 2 and 7.5 h after morning feeding. Nitrogen gas was injected by using an airtight syringe into the rumen immediately after collecting the rumen gas sample as a control. Then rumen gas samples were collected at 5, 10, 20, 40 and 60 min. after injection. Dry-matter intakes were $42g/kg^{0.75}$ and $57g/kg^{0.75}$ for DCS, and $36g/kg^{0.75}$ and $59g/kg^{0.75}$ for RWS, at 1 M and 2 M levels, respectively. Animals ingested both silages about 20% less than expected at 2 M level. The rumen gas composition did not differ significantly between 2 h and 7.5 h after feeding except for $N_2$. Content of $CO_2$ in gas composition was significantly higher at 2 M level than at 1 M (p<0.05) for both RWS and DCS, whereas $CH_4$ showed no significant difference between feeding levels. At both feeding levels, $CO_2$ showed a higher (p<0.05) percentage in DCS than RWS. A dilution technique by using $N_2$ injection is not appropriate for the determination of gas production in vivo, unless the rate of rumen gas turnover is considered. Changes in composition at fasting indicate that the rumen fermentation may reach the lowest level after 72 h fasting for sheep given silage as their sole diet.

Process Control for the Synthesis of Ultrafine Si3N4-SiC Powders by the Hybrid Plasma Processing (Hybrid Plasma Processing에 의한 Si3N4-SiC계 미립자의 합성과정 제어)

  • ;吉田禮
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.681-688
    • /
    • 1992
  • Ultrafine Si3N4 and Si3N4+SiC mixed powders were synthesized through thermal plasma chemical vapor deposition(CVD) using a hybrid plasma, which was characterized by the supersposition of a radio-frequency plasma and arc jet. The reactant SiCl4 was injected into an arc jet and completely decomposed in a hybrid plasma, and the second reactant CH4 and/or NH3 mixed with H2 were injected into the tail flame through double stage ring slits. In the case of ultrafine Si3N4 powder synthesis, reaction efficiency increased significantly by double stage injection compared to single stage one, although crystallizing behaviors depended upon injection speed of reactive quenching gas (NH3+N2) and injection method. For the preparation of Si2N4+SiC mixed powders, N/C composition ratio could be controlled by regulating the injection speed of NH3 and/or CH4 reactant and H2 quenching gas mixtures as well as by adjusting the reaction space.

  • PDF

An Experimental Study on Variations of Exhaust Gas Temperature and Concentration with Synthetic Gas Combustion in Exhaust Manifold (배기관에서의 합성가스 연소에 따른 배기가스 온도 및 농도 변화에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Yang, Seung-Il;Song, Chun-Sub;Park, Young-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.56-62
    • /
    • 2008
  • A synthetic gas reformed from hydrocarbon-based fuels consists of $H_2$, CO and $N_2$. Hydrogen contained in the synthetic gas is a very useful species in chemical processes, due to its wide flammability range and fast burning speed. The ESGI (Exhaust Synthetic Gas Injection) technology is developed to shorten the light-off time of three way catalysts through combustion of the synthetic gas in the exhaust manifold during the cold start period of SI engines. Before the ESGI technology is applied to the test engine, the authors set a test rig that consists of gas temperature and composition controllers, an exhaust pulse generator and an exhaust manifold with a visualization window, in order to optimize the point and conditions of injection of the synthetic gas. Through measuring burned gas temperatures and taking photographs of synthetic gas combustion at the outlet of the exhaust manifold, the authors tried to find the optimal injection point and conditions. Analysis of burned gas composition has been performed for various $O_2$ concentrations. As a result, when the synthetic gas is injected at the port outlet of the cylinder No. 4 and $O_2$ concentration exceeds 4%, combustion of the synthetic gas is strong and effective in the exhaust manifold.

Performance Analysis in Direct Internal Reforming Type of Molten Carbonate Fuel Cell (DIR-MCFC) according to Operating Conditions (직접내부개질형 용융탄산염 연료전지(DIR-MCFC)의 운전 조건에 따른 성능 분석)

  • JUNG, KYU-SEOK;LEE, CHANG-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • In this study, the operation characteristics of the internal reforming type molten carbonate fuel cell (MCFC) were studied using computational fluid dynamics (CFD) analysis according to the steam to carbon ratio (S/C ratio), operating temperature, and gas utilization. From the simulation results, the distribution of gas composition due to the electrochemical reaction and the reforming reaction was predicted. The internal reforming type showed a lower temperature difference than the external reforming type MCFC. As the operating temperature decreased, less hydrogen was produced and the performance of the fuel cell also decreased. As the gas utilization rate decreased, more gas was injected into the same reaction area, and thus the performance of the fuel cell increased.

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

Effect of Reaction Gases on PFCs Treatment Using Arc Plasma Process (아크 플라즈마를 이용한 과불화합물 처리공정에서 반응가스에 의한 효과)

  • Park, Hyun-Woo;Choi, Sooseok;Park, Dong-Wha
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • The treatment of chemically stable perflourocompounds (PFCs) requires a large amount of energy. An energy efficient arc plasma system has been developed to overcome such disadvantage. $CF_4$, $SF_6$ and $NF_3$ were injected into the plasma torch directly, and net plasma power was estimated from the measurement of thermal efficiency of the system. Effects of net plasma power, waste gas flow rate and additive gases on the destruction and removal efficiency (DRE) of PFCs were examined. The calculation of thermodynamic equilibrium composition was also conducted to compare with experimental results. The average thermal efficiency was ranged from 60 to 66% with increasing waste gas flow rate, while DRE of PFCs was decreased with increasing gas flow rate. On the other hand, DRE of each PFCs was increased with the increasing input power. Maximum DREs of $CF_4$, $SF_6$ and $NF_3$ were 4%, 15% and 90%, respectively, without reaction gas at the fixed input power and waste gas flow rate of 3 kW and 70 L/min. A rapid increase of DRE was found using hydrogen or oxygen additional gases. Hydrogen was more effective than oxygen to decompose PFCs and to control by-products. The major by-product in the arc plasma process with hydrogen was hydrofluoric acid that is easy to be removed by a wet scrubber. DREs of $CF_4$, $SF_6$ and $NF_3$ were 25%, 39% and 99%, respectively, using hydrogen additional gas at the waste gas flow rate of 100 L/min and the input power of 3 kW.