• Title/Summary/Keyword: Initial parcel number

Search Result 2, Processing Time 0.018 seconds

Assessment of Prediction Ability of Atomization and Droplet Breakup Models on Diesel Spray Dynamic (디젤분무에서 미립화 및 액적분열모델의 예측능력평가)

  • Kim, J.I.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.35-42
    • /
    • 2000
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristics. Of the many atomization and droplet breakup models based on the breakup mechanism due to aerodynamic liquid and gas interaction, four models classified as mathematical models, such as TAB, modified TAB, DDB, WB and one of the hybrid model based on WB and TAB models were selected for the assessment of prediction ability of diesel spray dynamics. The assessment of these models by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and sauter mean diameter(SMD) from the literature. It is found that the prediction of spray tip penetration and SMD by the hybrid model was only influenced by the initial parcel number. All the atomization and droplet breakup models considered here was strongly dependent on the grid resolution. Therefore it is important to check the grid resolution to get an acceptable results in selecting the models. At low injection pressure, modified TAB model could only give the good agreement with experimental data of spray tip penetration and both of modified TAB and DDB models were recommendable for the prediction of SMD. At high injection pressure, hybrid model could only give the good agreement with the experimental data of spray tip penetration and the prediction of all of the selected models did not match the experimental data. Spray tip penetration was increased with the increase the $B_1$ and the increase of $B_1$ did not affected the prediction of SMD.

  • PDF

Evaluating Carbon Dioxide Emission from Cadastral Category based on Tier 3 Approach (Tier 3 방식에 의거한 지목별 온실가스 배출 실태평가)

  • Kim, Dae-Ho;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.11-22
    • /
    • 2011
  • It is usual for the carbon dioxide emission to be calculated by official energy consumption statistics produced from a number of specialized industrial process such as refinery, power plant etc. The aim of this research was to evaluate potential of cadastral system in monitoring carbon dioxide emitted from land use. An empirical study for a cadastral category was conducted to demonstrate how a on-site measurement can be used to assist in estimating the carbon dioxide emission in terms of land use specific settings. The cadastral category based analysis made it possible to identify area-wide patterns of carbon dioxide emission, which cannot be acquired by traditional Government statistics. It was possible to identify successively increasing trends in the human-related parcels such as housing land while decreasing trends of carbon dioxide in sink parcels(eg. forest). The results indicate that the cadastral parcel could be used not only as a tool to monitor carbon dioxide emission, but also as an evidence to restrict initiation of development activities causing negative influence to carbon dioxide emission such as road construction. As a result, the research findings have established the new concept of "carbon dioxide emission monitoring based on cadastral category", proposed as an initial aim of this paper.