• 제목/요약/키워드: Initial normal stress

검색결과 107건 처리시간 0.022초

비틀림 마운트형 터빈 블레이드의 파괴기구에 관한 연구 (A Study on Fracture Mechanism of Torsion-Mounted Type Turbine Blade)

  • 홍순혁;이동우;장득열;조석수;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.585-590
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

표면거칠기와 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구 (A Study on Failure Analysis of Turbine Blade Using Surface Roughness and FEM)

  • 홍순혁;이동우;이선봉;조석수;주원식
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.170-177
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

폴리머 침투콘크리트의 재료특성과 휨부재의 비선형 파괴해석 (Material Properties of Polymer-Impregnated Concrete and Nonlinear Fracture Analysis of Flexural Members)

  • 변근주;이상민;최홍식;노병철
    • 콘크리트학회지
    • /
    • 제6권2호
    • /
    • pp.97-107
    • /
    • 1994
  • 폴리머 침투콘크리트는 경화된 보통 콘크리트에 폴리머 침투제를 침투시켜 제조되는 신소재의 폴리머-콘크리트 복합체이다. 본 연구는 아크릴계 열가소성수지를 이용한 폴리머 침투콘크리트를 개발하고 폴리머 침투콘크리트 휨부재의 거동평가를 위한 재료모델, 구조해석 과정과 구조해석 프로그램을 개발하는데 목적이 있다. 본 연구는 크게 두 부분으로 구성된다. 첫 번째 단계에서는 결정성 고분자모노머인 methyl methacrylate(MMA)를 대상으로 침투성, 반응성, 열적 안정성 및 물성개선 효과를 종합적으로 분석하여 폴리머 침투제의 구성비와 제조공정을 정립하고, 본 연구의 실험자료로부터 폴리머 침투콘크리트의 제 강도특성, 파괴인성, 파괴에너지, 응력-변형률 관계 및 인장연화 관계를 보통 콘크리트의 압툭강도와 휨강도, 폴리머 함유율, 부재깊이, 초기 인공균열깊이 등의 함수로 각각 실험공식을 도출한다. 두 번째 단계에서는 MMA계 폴리머 침투콘크리트 구조부재의 하중단계별 탄성거동, 극한거동 및 인장연화거동을 해석하기 위한 구조해석 프로그램을 개발하고, 연구결과의 타당성과 적용성을 입증하기 위하여 폴리머 침투콘크리트의 제조공정, 제 실험공식 및 구조해석 프로그램은 실측거동을 잘 반영하고 있으므로 제한된 범위내에서 MMA계 폴리머 침투콘크리트 구조부재의 제조, 물성평가 및 거동해석에 적용 가능한 것으로 사료된다.

쇄빙연구선 ARAON호의 남극해 쇄빙운항 중 계측된 스트레인게이지 데이터 분석 (Analysis of Strain Gauge Data Onboard the IBRV ARAON during Icebreaking Voyage in the Antarctic Sea Ice)

  • 천은지;최경식;김호연;이탁기
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.489-494
    • /
    • 2014
  • Estimation of correct ice load under various operating conditions is important during the design and the operation stages of an icebreaker. Normal operating conditions are expected from the official field ice trials and also from general ice transit action. In this paper ice load for the Korean icebreaking research vessel, ARAON, under normal operating condition, is discussed. Published ice load data from full-scale sea trials of six icebreakers were analysed to derive an empirical ice load prediction formula. The IBRV ARAON had sea ice trials during 2010 and 2012 summer season. Strain gauge signal were recorded during her icebreaking voyage and the measured strain data were converted to the equivalent hull stress values. The effect of ARAON's speed in ice and the hull stresses are investigated. By comparing the empirical formula and ice load calculation based von measured data, it is recommended to use the empirical ice load estimation formula for the initial design stage.

On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Panakhli, Panakh G.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.287-316
    • /
    • 2017
  • This paper studies the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall. This study is made by employing the discrete-analytical solution method proposed in the paper by the authors (Akbarov and Panakhli (2015)). It is assumed that in the initial state the fluid flow is caused by the axial movement of the plate and the additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field in the fluid and a stress-strain state in the plate. The stress-strain state in the plate is described by utilizing the exact equations and relations of the linear elastodynamics. However, the additional fluid flow field is described with linearized Navier-Stokes equations for a compressible viscous fluid. Numerical results related to the influence of the problem parameters on the frequency response of the normal stress acting on the plate fluid interface plane and fluid flow velocity on this plane are presented and discussed. In this discussion, attention is focused on the influence of the initial plate axial moving velocity on these responses. At the same, it is established that as a result of the plate moving a resonance type of phenomenon can take place under forced vibration of the system. Moreover, numerical results regarding the influence of the fluid compressibility on these responses are also presented and discussed.

국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석 (Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project)

  • 김아람;김형목;김현우;신영재
    • 터널과지하공간
    • /
    • 제27권2호
    • /
    • pp.89-99
    • /
    • 2017
  • 이산화탄소 지중저장 사업의 성공적인 수행을 위해서는 저장시스템의 안정성을 확보할 수 있는 대상 지층을 선정하고 현장 지질조건에 최적화된 주입 조건을 설계해야 한다. 본 연구에서는 국내 실증실험 대상 예상후보지의 하나인 장기분지의 지질구조를 바탕으로 2차원 간략해석모델을 구축하고 TOUGH-FLAC 연계해석기법을 사용하여 초기응력조건과 주입량이 이산화탄소 격리저장시스템에 미치는 영향을 분석하였다. 기초해석 결과, 수직응력이 수평응력보다 우세한 정단층 응력조건에서 전단미끄러짐 가능성이 가장 높은 결과를 보였으며, 단위시간당 주입량을 달리하는 주입량 시나리오 해석에서는 주입량을 단계적으로 증가시켜 주입하는 경우가 공극압의 증가폭이 가장 크고 활동마찰계수를 이용한 전단미끄러짐 가능성 평가 결과에서도 가장 불리한 것으로 평가되었다.

Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study

  • Chergui, Selma;Daouadji, Tahar Hassaine;Hamrat, Mostefa;Boulekbache, Bensaid;Bougara, Abdelkader;Abbes, Boussad;Amziane, Sofiane
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.197-217
    • /
    • 2019
  • In this study, the interfacial stresses in RC beams strengthened by externally bonded prestressed GFRP laminate are evaluated using an analytical approach, based on the equilibrium equations and boundary conditions. A comparison of the interfacial stresses obtained from the present analytical model and other existing models is undertaken. Otherwise, a parametric study is conducted to investigate the effects of geometrical and material properties on the variation of interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate. The results obtained indicate that the damage degree has little effect on the maximum shear stress, with a variation less than 5% between the damaged and undamaged RC beams. However, the results also reveal that the prestressing level has a significant effect on the interfacial stresses; hence the damaged RC beam strengthened with an initial prestressing force of 100 kN gives 110% higher maximum shear stress than the damaged RC beam strengthened with an initial prestressing force of 50 kN. The values of shear stress obtained by the analytical approach are approximately equal to 44% of those obtained from the numerical solution, while the interfacial normal stresses predicted by the numerical study are approximately 26% higher than those calculated by the analytical solution.

증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동 (Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube)

  • 신정호;임상엽;김동진
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.

임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G (Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G)

  • 박정욱;박찬희;장리;윤정석;손장윤;이창수
    • 터널과지하공간
    • /
    • 제33권3호
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Oxidative Stress and Antioxidants in Disease and Cancer: A Review

  • Gupta, Rakesh Kumar;Patel, Amit Kumar;Shah, Niranjan;Choudhary, Arun Kumar;Jha, Uday Kant;Yadav, Uday Chandra;Gupta, Pavan Kumar;Pakuwal, Uttam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4405-4409
    • /
    • 2014
  • Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.