• Title/Summary/Keyword: Initial growth

Search Result 2,920, Processing Time 0.033 seconds

Study of Moist Air Flow Through the Ludwieg Tube

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong;Toshiaki Setoguchi;Sigeru Matsuo;Raghu S. Raghunathan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2066-2077
    • /
    • 2003
  • The time-dependent behavior of unsteady condensation of moist air through the Ludwieg tube is investigated by using a computational fluid dynamics (CFD) work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The predicted results are compared with the previous experiments using the Ludwieg tube with a diaphragm downstream. The present computations represent the experimental flows well. The time-dependent unsteady condensation characteristics are discussed based upon the present predicted results. The results obtained clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to unsteady condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity and it results from the periodic excursions of the condensation shock wave.

Numerical Study of Aggregation and Breakage of Particles in Taylor Reactor (테일러 반응기 내의 입자응집과 분해에 관한 수치 연구)

  • Lee, Seung Hun;Jeon, Dong Hyup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.365-372
    • /
    • 2016
  • Using the computational fluid dynamics (CFD) technique, we simulated the fluid flow in a Taylor reactor considering the aggregation and breakage of particles. We calculated the population balance equation (PBE) to determine the particle-size distribution by implementing the quadrature method-of-moment (QMOM). It was used that six moments for an initial moments, the sum of Brownian kernel and turbulent kernel for aggregation kernel, and power-law kernel for breakage kernel. We predicted the final mean particle size when the particle had various initial volume fraction values. The result showed that the mean particle size and initial growth rate increased as the initial volume fraction of the particle increased.

Studies on the Water Purification Using Water Parsley (미나리 (Oenanthe javanica(Blume) DC)를 이용한 수질정화에 관한 연구)

  • 권성환;나규환;류재근;김종택
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.56-63
    • /
    • 1996
  • The results of the water purification studies using water parsley (Oenanthe javanica) were obtained as follows. The removal rate of nutrient salts increased with longer plant growth periods. The results of this study use the assumption, log(T+1) = $K(C_0-C)^A$, based on Prakish's Theory. The initial concentration was calculated from experimental data. A and K are closely related to the initial concentration. It is possible to model the concentration of residual salts, as time goes by, if concentration is constant. It was observed that water parsley neutralizes acid and alkali substances promptly. The maximum suitable neutralization period is 48 hours. But water parsley withered up in strong acid and alkali solutions within a week. The removal efficiency of Cd progresses in 2 steps, which are unrelated to the initial concentration of Cd. The first part of the curve shows the concentration rapid rate of Cd removal, followed by a levelling off. The removal rate of $NO_x-N$ in the sample water tank containing 0.5 ppm Cd was between 50~80% but the removal rate was less than 20% for the higher concentration. On the other hand, increased amounts of $PO_4-P$ in the sample water tank from the third day on suspected that $PO_4-P$ was desorbed from the water parsley. The accumulation efficiency of Cd in plant was increased in proportion to the initial concentration of Cd. The accumulation phenomenon was observed in the tanks more than 50~100 times.

  • PDF

Isolation and Characterization of Ammonia and Nitrite Nitrogen Oxidizing Strains (암모니아 및 아질산성 질소 산화균주의 분리 및 특성)

  • 남범식;류원률;이영호;김정목;조무환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.76-81
    • /
    • 1999
  • Characteristics and oxidizing ability of both $NH_4-N$ and$NO^2$-N were examined for the strains isolated from wastewater treatment facilities and from natural systems by using Winogradsky columns. In case of $NH_4$-N, the most efficient strain was Nitrosomonas KB1 isolated from wastewater treatment facility of K corporation and in case of $NO_2$-N, it was Nitrobacter KB2 from the same site as Nitrosomonas KB1. For Nitrosomonas KB1, 91% of $NH_4$-N was oxidized after 4 days of cultivation. Optimal growth temperature and initial pH of Nitrosomonas KB1 were $28^{\circ}C$ and 7, respectively. In comparison to oxidizing rates with changing initial concentration of $NH_4$-N, the ammonia oxidizing rate was increased up to 6.7 mg/day for the initial $NO_2$-N concentrations for the region lower than 100 mg $NH_4-N/L$, but it was gradually reduced for the region higher than 100 mg $NH_4-N/L$. For Nitrobacter KB2 90% of $NO_2$-N was removed after culturing for 4 days. Optimal growth temperature and initial pH of Nitrobacter KB2 was $28^{\circ}C$ and 7, respectively. And the nitrite oxidizing rate was increased in proportion to the initial concentrations of $NO_2$-N up to 200 mg/$\ell$, and it was maintained almost 4.2 mg/day irrespective of initial $NO_2$-N higher than 200 mg/L.

  • PDF

Effects of Initial EC Values on Seedling Growth and Utilization of Minerals in Hydroponic Rice Seedling Raising (벼 수경육묘에서 양액의 EC 초기 설정에 따른 묘 생육과 무기성분의 이용)

  • 김영광;홍광표;정완규;손길만;송근우;강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.200-204
    • /
    • 2003
  • This study was conducted to develop a technology for raising seedlings hydroponically using the bed in which the seedlings grew in nutrient solution without soil. In order to establish the optimum EC value of nutrient solution, six initial EC values (1, 2, 3, 4, 5 dS/m and control) of Yoshida's hydroponic solution were examined. Seedling height and dry weight increased with increasing below EC up to 3.0 dS/m, but showed no significant increase at higher than EC 3.0 dS/m. Nutrient solution with initial EC of 3.0 dS/m was good to be dropped down nearly to 1 dS/m after 15-day seedling culture. But those with initial EC of 4.0 and 5.0 dS/m were judged not appropriate because of high EC value in waste nutrient solution. Utilization efficiency of minerals of nutrient solution and rice endosperm was higher on the whole at initial EC of 2.0-3.0 dS/m. Considering seedling growth and utilization efficiency of supplied nutrient solution, initial EC is judged to be suitable at 3.0 dS/m.

Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law

  • Hosseini-Toudeshky, Hossein;Goodarzi, M. Saeed;Mohammadi, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.41-56
    • /
    • 2013
  • Initiation and growth of delamination is a great concern of designers of composite structures. Interface elements with de-cohesive constitutive law in the content of continuum damage mechanics can be used to predict initiation and growth of delamination in single and mixed mode conditions. In this paper, an interface element based on the cohesive zone method has been developed to simulate delaminatoin growth of post-buckled laminate under fatigue loading. The model was programmed as the user element and user material by the "User Programmable Features" in ANSYS finite element software. The interface element is a three-dimensional 20 node brick with small thickness. Because of mixed-mode condition of stress field at the delamination-front of post-buckled laminates, a mixed-mode bilinear constitutive law has been used as user material in this model. The constitutive law of interface element has been verified by modelling of a single element. A composite laminate with initial delamination under quasi-static compressive Loading available from literature has been remodeled with the present approach. Moreover, it will be shown that, the closer the delamination to the free surface of laminate, the slower the delamination growth under compressive fatigue loading. The effects of laminate configuration on delamination growth are also investigated.

Effect of Additives on Densification and Grain Growth of Magnesia (마그네시아의 치밀화 및 입자성장에 미치는 첨가물의 영향)

  • Lee, Hae-Weon;Kim, Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.127-132
    • /
    • 1982
  • This experiment has been carried out for the purpose of investigating the effect of additives on densification and grain growth in magnesium oxide by a two-step process; hot pressing and heat treating. MgO powder has been obtained by calcining extra reagent grade MgCO3 at 90$0^{\circ}C$ for 30 minutes, and additives have been added to $MgCO_3$ in the form of soluble salts-Al$(NO_3)_3$$. $9H_2O$ and $Cr(NO_3)_3$.9H_2O$. The hot pressing has been carried out with changes of soaking time at 125$0^{\circ}C$ under the pressure of 250kg/$\textrm{cm}^2$, and the heat treating also at same temperature. The initial particle size of MgO measured by particle size analyzer was 0.86 microns. Densification rate obeyed the equation D=K lnt + C, and grain growth rate obeyed the equation G-G0=kt1/2. It was vaporization of some $Cr_2O_3$ and formation of solid solution that had an influence on desification of MgO containing $Cr_2O_3$. Activation energy for grain growth of pure MgO was 62.4 kcal/mole, therefore grain growth was supposed to be diffusioncontrolled process. But after heat treatmeat, excess additives were expected to slow down the grain growth by the formation of second phase or the solute atoms at grainboundary.

  • PDF

Xylanase Production by Bacillus sp. A-6 Isolated from Rice Bran

  • Lee, Jun-Ho;Choi, Suk-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1856-1861
    • /
    • 2006
  • A Bacillus sp. A-6 strain that produced xylanase was isolated from rice bran. The optimal temperature and pH for xylanase activity of the culture supernatant of Bacillus sp. A-6 were 40$^{\circ}C$ and pH 7, respectively. The optimal temperature and pH for xylanase production in the xylan medium were 30$^{\circ}C$ and pH 9, respectively. The optimal concentrations of oat spelt xylan and peptone for xylanase production were 0.5% and 1.5%, respectively. The best nitrogen sources for xylanase production was beef extract, but xylanase production was also supported comparably by tryptone and peptone. The bacterial growth in the optimal xylan medium reached stationary growth phase after 12 h of incubation. The xylanase production in the culture supernatant increased dramatically during the initial 12 h exponential growth phase and then remained constant at 23.8-24.5 unit/ml during the stationary growth phase. The pH of the culture medium decreased from 8.8 to 6.7 during the exponential growth phase and subsequently increased to 8.1 during the stationary growth phase. Rice bran, sorghum bran, and wheat bran as well as oat spelt xylan induced xylanase production. The xylanase production was repressed when glucose was added to the xylan-containing medium.

Growth Mechanism of Nickel Nanodispersoids during Consolidation of $Al_2O_3/Ni$ Nanocomposite Powder ($Al_2O_3/Ni$ 나노복합분말의 치밀화중 분산상 Ni의 성장기구)

  • ;;;;T. Sekino;K. Niihara
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.237-243
    • /
    • 2000
  • The property and performance of the $Al_2O_3/Ni$ nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. $Al_2O_3/Ni$ powder mixtures were prepared by wet ball milling and hydrogen reduction of $Al_2O_3$ and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.

  • PDF

Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board (Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성)

  • 김일수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF