• Title/Summary/Keyword: Initial diameter

Search Result 801, Processing Time 0.027 seconds

Experimental Study of Micro-Shock Tube Flow (Micro-Shock Tube 유동에 대한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Rasel, Md. Alim Iftakhar;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.385-390
    • /
    • 2015
  • The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3mm to 6mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

THE EFFECT OF INTERNAL IMPLANT-ABUTMENT CONNECTION AND DIAMETER ON SCREW LOOSENING

  • Ha, Chun-Yeo;Kim, Chang-Whe;Lim, Young-Jun;Jang, Kyung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.379-392
    • /
    • 2005
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection, and in molars. Purpose. The purposes of this study were: (1) to compare the initial abutment screw detorque values of the six different implant-abutment interface designs, (2) to compare the detorque values of the six different implant-abutment interface designs after cyclic loading, (3) to compare the detorque values of regular and wide diameter implants and (4) to compare the initial detorque values with the detorque values after cyclic loading. Material and methods. Six different implant-abutment connection systems were used. The cement retained abutment and titanium screw of each system were assembled and tightened to 32Ncm with digital torque gauge. After 10 minutes, initial detorque values were measured. The custom titanium crown were cemented temporarily and a cyclic sine curve load(20 to 320N, 14Hz) was applied. The detorque values were measured after cyclic loading of one million times by loading machine. One-way ANOVA test, scheffe’s test and Mann-Whitney U test were used. Results. The results were as follows : 1. The initial detorque values of six different implant-abutment connections were not significantly different(p>0.05). 2. The detorque values after one million dynamic cyclic loading were significantly different (p<0.05). 3. The SS-II regular and wide implant both recorded the higher detorque values than other groups after cyclic loading(p<0.05). 4. Of the wide implants, the initial detorque values of Avana Self Tapping Implant, MIS and Tapered Screw Vent, and the detorque values of MIS implant after cyclic loading were higher than their regular counterparts(p<0.05). 5. After cyclic loading, SS-II regular and wide implants showed higher detorque values than before(p<0.05).

A Study of Natural Air Drying of Rough Rice Leading to Optimization -Part II - Optimum Grain Depth and Least Cost System- (시물레이숀에 의한 상온통풍건조방법(常温通風乾燥方法)의 적정화(適正化)에 관(關)한 연구 -Part II : 최적퇴적(最適堆積)깊이와 최소건조비용(最少乾燥費用))

  • Chung, Chang Joo;Koh, Hak Kyun;Noh, Sang Ha;Han, Yong Jo
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-52
    • /
    • 1982
  • This study was intended to develop a cost function for the natural air in-bin drying: system which could lead to an optimization of the drying system cost. Based on the cost function developed, a series of simulated drying tests were conducted with 10-year weather data (1970~1979) for 7 different regions by applying an appropriate levels of system factors. System performance factors treated in this study were initial moisture content, airflow rate, bin diameter and grain depth. An optimization procedure to find the least cost system was developed as follows: First, the worst year of the past decade was determined in consideration of the dryiang time and maximum dry matter loss. Second, the minimum airflow rate for a fixed bin diameter and grain depth was determined. Third, the optimum grain depth was found for the minimum airflow rate with different initial moisture contents and bin diameters. The results obtained in this study are summarized as follows: 1. The optimization procedure developed in this study was able to reduce the time and efforts significantly. 2. Optimum values of drying parameters including airflow rate, grain depth, and fan size were determined for different initial moisture contents and bin diameters in each region. The results are shown in Tables 3 to 9. 3. Optimum grain depths decreased as the initial moisture content and airflow rate increased. 4. Drying time for the least cost system should be reduced with higher initial moisture content and lower drying potential to prevent grain spoilage. 5. The fixed cost was 65 to 75 percent of the total system cost and the variable cost was 25 to 35 percent. To reduce the fixed cost it is desirable to use a drying bin 2 or 3 times a year.

  • PDF

Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation

  • Qi, Jianan;Wang, Jingquan;Li, Ming;Chen, Leilei
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.79-92
    • /
    • 2017
  • Initial damage to a stud due to corrosion, fatigue, unexpected overloading, a weld defect or other factors could degrade the shear capacity of the stud. Based on typical push-out tests, a FEM model and theoretical formulations were proposed in this study. Six specimens with the same geometric dimensions were tested to investigate the effect of the damage degree and location on the static behavior and shear capacity of stud shear connectors. The test results indicated that a reduction of up to 36.6% and 62.9% of the section area of the shank could result in a dropping rate of 7.9% and 57.2%, respectively, compared to the standard specimen shear capacity. Numerical analysis was performed to simulate the push-out test and validated against test results. A parametrical study was performed to further investigate the damage degree and location on the shear capacity of studs based on the proposed numerical model. It was demonstrated that the shear capacity was not sensitive to the damage degree when the damage section was located at 0.5d, where d is the shank diameter, from the stud root, even if the stud had a significant reduction in area. Finally, a theoretical formula with a reduction factor K was proposed to consider the reduction of the shear capacity due to the presence of initial damage. Calculating K was accomplished in two ways: a linear relationship and a square relationship with the damage degree corresponding to the shear capacity dominated by the section area and the nominal diameter of the damaged stud. This coefficient was applied using Eurocode 4, AASHTO LRFD (2014) and GB50017-2003 (2003) and compared with the test results found in the literature. It was found that the proposed method produced good predictions of the shear capacity of stud shear connectors with initial damage.

A 3 year prospective study of survival rate of narrow diameter implants (좁은 직경 임플란트 3년간의 생존율에 관한 후향적 연구)

  • Lee, Sung-Jo;Jung, Sae-Young;Shin, Hyun-Seung;Park, Jung-Chul;Song, Young-Gyun;Cho, In-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.1
    • /
    • pp.32-38
    • /
    • 2018
  • Purpose: The purpose of present study was to retrospectively analyze the survival rate of narrow diameter implant less than 3.6 mm by initial stability and radiographic measurements. Materials and Methods: In total, 24 patients who received 38 narrow diameter implants (${\leq}3.6mm$ in diameter, ${\geq}7mm$ in length) were enrolled in this retrospective study. The cumulative survival rate was calculated and various factors were investigated according to the implant platform diameter, body diameter, length, position, concomitant use of guided bone regeneration in implant placement and final prosthesis type. Initial stability was investigated with implant stability quotient (ISQ) value. The mesial and distal marginal bone level (MBL) change was calculated with radiography. Results: The overall survival rate was 92.11%. Mean ISQ value and MBL change of survival implants was 66.26 and $0.14{\pm}0.31mm$, respectively. None of the implants with platform diameters larger than the body diameter failed. Conclusion: In conclusion, the findings of present study suggest that narrow diameter implant could be predictable treatment in narrow alveolar ridge.

A Study on Characteristics of Sedimentation Rate of Suspended Fine Particles under Floc Size and Density (플록의 입경과 밀도에 따른 부유된 미세 미립자의 침전률 특성에 관한 연구)

  • Kim, Jong-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.107-113
    • /
    • 2009
  • This paper considers the influence of floc on the sedimentation rate for the cohesive material. The effects of floc density and size changes were also taking into consideration during the experiment. The settling velocity of a discrete floc was measured in a quiescent water column. Floc diameter and density were investigated using a modified Stokes equation with some constants such as water density, viscosity, material density and the floc fractal dimension $n_f$ obtained from the relationship between the floc diameter and the floc settling. The floc diameter of quartz and alumina increased at increasing initial concentrations. The floc size of quartz with increasing NaCl concentration varied between approximately 0.8 um to $10{\mu}m$. Floc density decreased as floc size increased. The floc settling velocity and the floc diameter have a straight line relationship on a logarithm. The floc fractal dimension nf was 2.65 with increasing of initial concentration and 2.93 with increasing of NaCl. The exponent n to predict the settling velocity was proposed and varied from 1 to 1.93.

Establishment of Initial Work Roll Crown in Finishing Plate Mill (후판 압연에서 작업롤 초기 크라운 설정)

  • 김종택;서재형;정병완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.499-504
    • /
    • 1993
  • To find a way for establishing work roll initial crown according to roll conditions, computer simulation for predicting plate crown in plate mill is done and effects of roll conditions on plate crown is analysed. Roll gap profile and plate crown are measured to be compared to the calculated values. As a result,a regression equation to establish work roll initial crown according to roll cooditions such as backup roll diameter, backup roll crown and work roll crown is obtained.

  • PDF

Vibration Characteristics of a New Optical Disk with Initial Stress (초기응력을 갖는 차세대 광디스크의 진동 특성)

  • Kim, Jae-Gwan;Lee, Seung-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2513-2519
    • /
    • 2000
  • Free vibration characteristics of an initially stressed CD/DVD disk, which is designed for increasing critical speeds of current optical disks, are analyzed using the Rayleigh-Ritz technique based on variational formulations. Natural frequencies of the new disk depend on membrane stresses caused by disk rotation as well as residual stresses imposed during the cooling process of the injection molding. Critical speeds are calculated for the various initial patterns of radial and circumferential stresses. Initially imposed tensile stresses increase the natural frequencies of all the vibration modes except zero nodal diameter mode, whose natural frequency is independent of circumferential stress. A new disk with initial tensile stress of 0.5MPa is shown to have its critical speed about 30 % higher than the current optical disk.

Taming of large diameter triaxial setup

  • Nair, Asha M.;Madhavi Latha, G.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.251-262
    • /
    • 2012
  • Triaxial tests are essential to estimate the shear strength properties of the soil or rock. Normally triaxial tests are carried out on samples of 38 mm diameter and 76 mm height. Granular materials, predominantly used in base/sub-base construction of pavements or in railways have size range of 60-75 mm. Determination of shear strength parameters of those materials can be made possible only through triaxial tests on large diameter samples. This paper describes a large diameter cyclic triaxial testing facility set up in the Geotechnical Engineering lab of Indian Institute of Science. This setup consists of 100 kN capacity dynamic loading frame, which facilitates testing of samples of up to 300 mm diameter and 600 mm height. The loading ram can be actuated up to a maximum frequency of 10 Hz, with maximum amplitude of 100 mm. The setup is capable of carrying out static as well as dynamic triaxial tests under isotropic, anisotropic conditions with a maximum confining pressure of 1 MPa. Working with this setup is a difficult task because of the size of the sample. In this paper, a detailed discussion on the various problems encountered during the initial testing using the equipment, the ideas and solutions adopted to solve them are presented. Pilot experiments on granular sub-base material of 53 mm down size are also presented.

Moisture Content Change of Korean Red Pine Logs During Air Drying: II. Prediction of Moisture Content Change of Korean Red Pine Logs under Different Air Drying Conditions (소나무 원목의 천연건조 중 함수율 변화: II. 소나무 원목의 천연건조 중 함수율 변화 예측)

  • HAN, Yeonjung;CHANG, Yoon-Seong;EOM, Chang-Deuk;LEE, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.732-750
    • /
    • 2019
  • Air drying was carried out on 15 Korean red pine logs to provide a prediction model of the moisture content (MC) change in the wood during drying. The final MC was 17.4% after 880 days since the beginning of air drying in the summer for 6 Korean red pine logs with 68.7% initial MC. The final MC was 16.0% after 760 days since the beginning of air drying in the winter for 9 Korean red pine logs with 35.8% initial MC. A regression model with R-squared of 0.925 was obtained as a result of multiple regression analyses with initial MC, top diameter, temperature, relative humidity, and wind speed as independent variable and and MC change during air drying as dependent variable. The initial MC and top diameter, which is the characteristic of Korean red pine, have greater effect on the MC decrease during air drying compared to meteorological factors such as the temperature, relative humidity, and wind speed. Two-dimensional mass transfer analysis was performed to predict the MC distribution of Korean red pine logs during air drying. Two prediction models with different air drying days and different meteorological factors for the determination of the diffusion coefficient and surface emission coefficient were presented. The error between the different two methods ranged from 0.1 to 0.8% and the difference from the measured value ranged from 2.2 to 3.6%. By measuring the internal MC during air drying of Korean pine logs with various initial MC and diameter, and calculating the moisture transfer coefficient in wood for each meteorological condition, the error of the prediction model can be reduced.