• 제목/요약/키워드: Initial deflection

검색결과 252건 처리시간 0.026초

실물모형 프리텐션 PSC 거더의 구조성능 시험 (A Structural Performance Test of a Full-scale Pretension PSC Girder)

  • 김태균;이두성;이성철
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.1741-1751
    • /
    • 2013
  • 본 연구에서는 프리텐션 공법으로 제작된 프리스트레스 콘크리트 거더의 정적거동을 조사하는 것이 주요 목적이다. 이동식 제작대를 이용하여 현장에서 제작된 지간 30m의 프리텐션 거더에 대한 재하시험이 수행되었다. 모든 시험결과는 수치해석결과와 비교되었으며, 거더의 중앙부에 대한 변위와 변형률이 측정되었다. 실험결과에서 실물모형 시험체의 초기균열발생 하중은 사용하중 보다 1.75배 증가된 하중에서 발생하였다. 또한 연성설계기준을 만족하여 시험체는 초기균열 발생후에 취성파괴하지 않고 연성 파괴될 것으로 판단되었다. 사용성 검토에서 균열발생시의 처짐값이 도로교설계기준(2010)에서 제시한 활하중 재하시의 허용처짐량을 만족하였다. 유한요소 해석결과와 시험결과는 전체적인 거동이 매우 유사하게 나타났으며, 현장제작 프리텐션 거더의 사용성과 안전성 측면에서는 큰 문제가 없는 것으로 판단된다.

초기균열이 있는 강섬유보강 콘트리트의 파괴특성 (A Study on the Fracture Characteristics of Pre-Cracked Fiber Reinforced Concrete)

  • 곽기주
    • 한국농공학회지
    • /
    • 제34권3호
    • /
    • pp.53-63
    • /
    • 1992
  • To investgate the fracture behavior of the steel fiber reinforced concreate, the specimens with different steel fiber contents of 0.0%, 0.5%, 1.0%, 1.5%, were made and notched with differents notch depth ratios of 0.0,0.2, 0.4, 0.6, and the three point bend tests were followed. Test results of 16 different types of above combined specimens were summarized as follows. 1.The load line deflection contents were found to increase 5%, 16%, 19%, respectively, compared to the unnotched specimen with the increased of initial notch depth ratio to 0.2,0.4, 0.6, respectively. 2.The frexural strength were found to decrease 14%, 16%, 21 %, respectively, compared to the unnotched specimen with the increase of initial notch depth ratio to 0.2, 0.4, 0.6,respectively. 3.The stress intensity factors of the steel fiber reinforced concrete were found to increase 1.1 1.5 1.9 times, respectively, compared to the concrete with no steel fiber content with the increase of fiber content to 0.5%, 1.0%, 1.5%, respectively. 4.The influence of the mass of the steel fiber reinforced concrete to the whole fracture energy was found to be minor with 6~8 % contribution. 5.The fracture energy of the steel fiber reinforced concrete, considering the load-deflection curve and concrete mass was found to be approximately 350-380kg m/m$^2$. 6.The regression analysis through the relationship between the compressive(Oc)/tensile (OT) strength and fracture energy(Gf) showed that the fracture energy of the steel fiber reinforced concrete could be predicted as follows. Gf= 19.2662 Oc - 3940.4 Gf= 246.876 OT- 6008.8

  • PDF

프로펠러 후류 간섭 효과를 고려한 투척식 무인기 롤 모멘트 예측 (Prediction of Rolling Moment for a Hand-Launched UAV Considering the Interference Effect of Propeller Wake)

  • 우상만;김동현;박지민
    • 항공우주시스템공학회지
    • /
    • 제16권6호
    • /
    • pp.114-122
    • /
    • 2022
  • 본 논문에서는 CFD 기법을 활용하여 전기체 형상의 투척식 무인기 형상에 대해 고속 회전하는 프로펠러와 그로 인해 생성된 후류 간섭 효과를 고려한 비정상 유동해석을 수행하였다. 또한 다양한 투척식 이륙 조건에서 롤 모멘트 평형에 요구되는 에일러론 타각을 정확하게 예측하기 위해 실제 조종면 회전을 고려한 유동해석이 수행되었다. 투척식 소형 무인기의 경우 초기 이륙상태에서 롤 안정성을 증대시키기 위해 적절한 초기 에일러론 설정을 활용하는 것이 유용한 방식이며, 구축된 공력 데이터베이스를 사용하여 다양한 이륙속도와 받음각 조건들에 대해 롤 모멘트를 상쇄시킬 수 있는 에일러론 타각 조건들이 빠르게 예측 가능함을 보였다.

최소자승법을 이용한 사장교의 적정 케이블 장력 결정 (Determination of an Optimum Initial Cable Tension Force for Cable-Stayed Bridges using the Least Square Method)

  • 박용명;조현준
    • 한국강구조학회 논문집
    • /
    • 제17권6호통권79호
    • /
    • pp.727-736
    • /
    • 2005
  • 본 연구에서는 사장교의 적절한 초기평형상태 결정을 위하여 최소자승법을 이용한 케이블 장력 결정 방법을 제시하였다. 본 방법은 거더의 케이블 지지점을 지점으로 한 연속보로부터의 처짐 및 모멘트 등을 목표치로 하고 케이블을 포함한 사장교 전체계 해석으로부터 구해진 응답과의 차이를 오차로 정의하여 거더 및 주탑의 오차를 최소화하는 방법이다. 특히, 주탑 모멘트, 거더 모멘트, 그리고 처짐의 보정 정도를 가중행렬을 도입하여 선택적으로 조절할 수 있으며, 여러 가지 사장교 형식에 대한 수치예제 및 기존 연구와의 비교를 통하여 본 방법의 효율성 및 타당성을 검증하였다.

석탄회 고형물의 파괴특성에 관한 실험적 연구 (Experiment Study for Fracture Characterist of the Ash solid)

  • 조병완;박종빈;김효원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 2002
  • By the recently, Environmental pollution is serious by the highly economic growth and expansion of lively country basic industry. Especially, in case of industrial waste and life waste leaped into a pollution source. Also, research for processing of waste and recycling countermeasure is a pressing question on national dimension because it is prohibited an ocean disposal and reclamation. In this study, it looked for fracture characteristic value of recycling a coal ash to decrease environmental pollution by picky and exhaustion of natural resources and to reduce self-weight to prepare for a tall building and earthquake. So a coal ash examined to be possible to do as construction material. It achieved compressive strength test and three points bending test with initial notch depth rate and age for variables to show a basic research data. From the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. From the results of the compressive strength test, the elastic modulus was experimentally proposed. Also on the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. The results that the strength and fracture energy value are lower than concrete or mortar is described in this paper. Also, it shows that the deflection at fracture decreases as the age increases and the notch sensitivity decrease. However, it is judged to be available to construction material if research is continuously gone forward.

  • PDF

Elastic buckling of end-loaded, tapered, cantilevered beams with initial curvature

  • Wilson, James F.;Strong, Daniel J.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.257-268
    • /
    • 1997
  • The elastic deflections and Euler buckling loads are investigated for a class of tapered and initially curved cantilevered beams subjected to loading at the tip. The beam's width increases linearly and its depth decreases linearly with the distance from the fixed end to the tip. Unloaded, the beam forms a circular are perpendicular to the axis of bending. The beam's deflection responses, obtained by solving the differential equations in closed form, are presented in terms of four nondimensional system parameters: taper ratio ${\kappa}$, initial shape ratio ${\Delta}_0$, end load ratio f, and load angle ${\theta}$. Laboratory measurements of the Euler buckling loads for scale models of tapered initially straight, corrugated beams compared favorably with those computed from the present analysis. The results are applicable to future designs of the end structures of highway guardrails, which can be designed to give the appropriate balance between the capacity to deflect a nearly head-on vehicle back to its right-of-way and the capacity to buckle sufficiently that penetration of the vehicle may be averted.

Innovative displacement-based beam-column element with shear deformation and imperfection

  • Tang, Yi-Qun;Ding, Yue-Yang;Liu, Yao-Peng;Chan, Siu-Lai;Du, Er-Feng
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.75-90
    • /
    • 2022
  • The pointwise equilibrium polynomial (PEP) element considering local second-order effect has been widely used in direct analysis of many practical engineering structures. However, it was derived according to Euler-Bernoulli beam theory and therefore it cannot consider shear deformation, which may lead to inaccurate prediction for deep beams. In this paper, a novel beam-column element based on Timoshenko beam theory is proposed to overcome the drawback of PEP element. A fifth-order polynomial is adopted for the lateral deflection of the proposed element, while a quadric shear strain field based on equilibrium equation is assumed for transverse shear deformation. Further, an additional quadric function is adopted in this new element to account for member initial geometrical imperfection. In conjunction with a reliable and effective three-dimensional (3D) co-rotational technique, the proposed element can consider both member initial imperfection and transverse shear deformation for second-order direct analysis of frame structures. Some benchmark problems are provided to demonstrate the accuracy and high performance of the proposed element. The significant adverse influence on structural behaviors due to shear deformation and initial imperfection is also discussed.

Numerical and experimental study of large deflection of symmetrically laminated composite plates in compression

  • Chai, Gin Boay;Hoon, Kay Hiang
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.359-367
    • /
    • 1994
  • The stability behaviour of symmetrically laminated rectangular composite plates with loaded ends clamped and unloaded edges simply-supported, and subjected to uniform in-plane compression is investigated. A numerical and experimental investigation is presented in this contribution. The stacking sequence of the laminated glass/epoxy composite plates is symmetric about the middle surface and consists of 8-ply [0, 90, +45, -45]s lamination. Numerical predictions were obtained through the use of the finite element method. The above plates were modelled with 8-noded isoparametric layered shell elements. The effect of the input parameters such as the degree and forms of prescribed initial imperfection and the incremental step size required for incremental loading, on the convergence of the solution is thoroughly examined. Experimental results are presented for 10 test panels. All test panels were made from glass/epoxy unidirectional prepregs and have aspect ratio of 5.088. The laminate thicknesses were found to vary from 1.054 mm to 1.066 mm. Comparison of experimental data with predicted results show good correlation and give confidence in the finite element model.

고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구 (A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete)

  • 곽계환;박종건
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

Evaluating fire resistance of prestressed concrete bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Hou, Wei;He, Shuanhai
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.663-674
    • /
    • 2017
  • This paper presents an approach for evaluating performance of prestressed concrete (PC) bridge girders exposed to fire. A finite element based numerical model for tracing the response of fire exposed T girders is developed in ANSYS. The analysis is carried out in three stages, namely, fire temperature calculation, cross sectional temperature evaluation, and then strength, deformation and effective prestress analysis on girders exposed to elevated temperatures. The applicability of the computer program in tracing the response of PC bridge girders from the initial preloading stage to failure stage, due to combined effects of fire and structure loading, is demonstrated through a case study, and validated by test data of a scaled PC box girder under ISO834 fire condition. Results from the case study show that fire severity has a significant influence on the fire resistance of PC T girders and hydrocarbon fire is most dangerous for the girder. The prestress loss caused by elevated temperature is about 10% under hydrocarbon fire till the girder failure, which can lead to the increase in deflection of the PC girder. The rate of deflection failure criterion is suggested to determine the failure of PC T girder under fire.