• Title/Summary/Keyword: Initial Viscosity

Search Result 355, Processing Time 0.026 seconds

Effect of the gravity on a nonlocal micropolar thermoelastic media with the multi-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • Erigen's nonlocal thermoelasticity model is used to study the effect of viscosity on a micropolar thermoelastic solid in the context of the multi-phase-lag model. The harmonic wave analysis technique is employed to convert partial differential equations to ordinary differential equations to get the solution to the problem. The physical fields have been presented graphically for the nonlocal micropolar thermoelastic solid. Comparisons are made with the results of three theories different in the presence and absence of viscosity as well as the gravity field. Comparisons are made with the results of three theories different for different values of the nonlocal parameter. Numerical computations are carried out with the help of Matlab software.

An experimental study on the viscosity features of sealant (bentonite-cement slurry) in umbrella arch method (강관다단공법에 적용되는 씰링재 (벤토나이트-시멘트 슬러리)의 점성 특성에 대한 실험)

  • Sagong, Myung;Lee, Jun S.;Park, Jeongjun;Cho, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.773-786
    • /
    • 2018
  • In this paper, viscosity features of sealant (bentonite-cement slurry), which is used for umbrella arch method in tunnel, were studied. The sealant must secure optimal strength and capacity for the waterproof and stabilization of borehole as well as to satisfy groutability. In this study, the variation of viscosity was measured with different mixing processes. With an increase of initial mixing period with water and bentonite mixture, the required time for the rapid increase of viscosity of the sealant is shorten. With increase of mixing period, the possibility of swelling of bentonite will increases and this can lead increase of the viscosity of the mixture. In addition, the behaviors of sealant vary with a drastic increase of the viscosity: thixotropy and rheopexy. Furthermore, the bentonite/water mixing period influences on the bleeding features of the sealant. Further study is required to introduce the guideline, which can be applicable in the field in the aspect of required capacity of the sealants and mixing processes of the ingredients.

Quality Characteristics of Dried Noodle Made with Dioscorea japonica Flour (마가루를 첨가한 국수의 품질 특성)

  • Park Bock-Hee;Cho Hee-Sook
    • Korean journal of food and cookery science
    • /
    • v.22 no.2 s.92
    • /
    • pp.173-180
    • /
    • 2006
  • This study evaluated the quality characteristics of dried noodles made of wheat flour with different concentrations of Dioscorea japonica flour. Cooking quality, mechanical texture properties and viscosity were measured, and sensory evaluation was performed with the prepared noodles. Water binding capacity, solubility and swelling power of the composite Dioscorea japonica flour-wheat flours were higher than those of pure wheat flour. Gelatinization points of the composite Dioscorea japonica flour-wheat flours were increased and initial viscosity at $95^{\circ}C$, viscosity at $95^{\circ}C$ after 15 minutes and maximum viscosity of these composites were decreased, with increasing Dioscorea japonica flour content, as measured by amylograph. With increasing Dioscorea japonica flour content, L and b values were decreased, but a value was increased, for the color values, while weight and volume of the cooked noodles and turbidity of the soup were increased. For the textural characteristics, the addition of Dioscorea japonica flour increased the hardness and decreased the adhesiveness, cohesiveness and springiness. Overall, the noodles made with 10% Dioscorea japonica flour were preferred more than the other noodles, as tested by sensory evaluation.

Changes in pasting properties and free fatty acids of different brown rice cultivar during storage

  • Choi, Induck;Kwak, Jieun;Yoon, Mi-Ra;Chun, Areum;Choi, Dong-Soo
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.491-496
    • /
    • 2017
  • Paddy rice is typically stored during postharvest until rice grain is processed into brown rice and milled rice by hulling and milling procedure, respectively. Recently, instead of storing paddy rice, storage of brown rice has been in the spotlight because it is more convenient and economically feasible. Different brown rice cultivars with varying amylose contents including waxy rice, medium-waxy rice, and non-glutinous rice were stored in room temperature storage for four months, and the changes in grain qualities of brown rice were evaluated. Amylose content significantly affected pasting properties in which rice cultivar with higher amylose content showed longer pasting time and higher peak viscosity. Storage also affected pasting viscosities, showing an increase in peak viscosity, but a decrease in breakdown viscosity. The changes in pasting viscosity during storage could be an important starch property for aged brown rice utilization. Waxy brown rice showed the weakest aging property in terms of free fatty acids (FFA) accumulation, whereas non-glutinous rice was more substantial grain quality against aging. The FFA values of two months storage were not significantly different from the initial FFA contents, suggesting that brown rice stored in room temperature for two months could be feasible for direct consumption of brown rice.

Effects of Calcium on Textural and Sensory Properties of Ramyon (칼슘의 첨가에 따른 라면의 조직감과 관능적 특성)

  • 정재홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.252-257
    • /
    • 1999
  • In an attempt to evaluate the effects of calcium on paste or gelatinization properties by amylograph and mixing properties by farinograph of wheat flour and on viscosity property cooking quality textural and sensory properties of Ramyon were examined. The contents of calcium used were from 1.0% to 3.0% based on flour weight. The viscosity property of wheat flour with calcium was increased the initial past-ing temperature but the amylograph peak viscosity were decreased in vice versa. The farinograph absorp-tion stability and breakdown were increased by calcium. The shear extrusion force and hardness of Ram-yon manufactured with calcium were shown much higher value than those of control. At cooking quality examination of Ramyon manufactured with calcium weight of cooked Ramyon was increased by volume was decreased. Extraction amounts of Ramyon manufactured with calcium during cooking were much smaller than those of control. These changes will provided many advantages in the preparation of Ram-yon. The I2 reaction value of Ramyon manufactured with calcium and control were shown to almost same values. Sensory properties of cooked Ramyon which was manufactured with calcium showed quite acceptable. Based on the cooking and sensory evaluation test addition of 0.3% calcim to wheat flour may be suitable for processing Ramyon.

  • PDF

Viscosity and Dynamic Rheological Properties of Job's-tears as a Function of Moisture Content (수분함량에 따른 율무가루의 점도변화 및 동적물성 특성에 관한 연구)

  • Yoon, Won-Byung;Kim, Byung-Yong;Shin, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.932-938
    • /
    • 1997
  • Changes in viscosity and dynamic theological properties of Job's-tears were measured by Bohlin dynamic tester as a function of moisture, and measurement was performed within a linear viscoelastic range. The result of the shear stress vs shear rate of Job's-tears at different moisture contents $(50{\sim}75%)$ was applied to mathematical models and Herschel-Bulkley model showed the highest correlation coefficient. Lower moisture content (55%) produced higher yield stress and consistency index, but lower flow behavior index, whereas higher moisture content showed reverse effects. Job's-tears with $50{\sim}70%$ moisture contents showed a higher storage modulus (G') than loss modulus (G') at all frequencies, showing a higher concentrated polymer characteristics. However, higher moisture content (>75%) showed crossover point between G' and G', and frequency dependency. As the moisture content was increased, the amount of viscoelastic properties such as G', G', complex viscosity decreased during heating, and initial temperature and miximum value of viscoelastic properties shifted to higher temperatures, representing the moisture-dependence of Job's-tears upon theological properties.

  • PDF

A Study on Field Applicability Evaluation of the Hydrophobic - Low Viscosity Surface Treatment Material for Pavement Preventive Maintenance (소수성 특성을 이용한 저점도 AP 표면처리재의 현장 적용성 연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • PURPOSES : Surface treatment material for pavement preventive maintenance should be inspected field applicability. This study(Part II) aimed to checkup coating characteristics and performance analysis using lab and field tests. The hydrophobic - low viscosity filling material for pavement preventive maintenance is presented in Part I, which is a series of companion study. METHODS : Relative comparison between general asphalt mixtures and surface treatment asphalt mixtures are analyzed and measured for the field application such as indirect tensile strength ratio(TSR), abrasion resistance, crack propagation resistance, temperature resistance, coating thickness, permeability resistance and skid resistance in terms of british pendulum number(BPN). RESULTS : It is found that TSR, crack propagation resistance and permeability resistance is increased as against uncoated asphalt specimen. Abrasion resistance and temperature resistance is secured from the initial coating thickness point of view, which is about 0.2~0.3mm. Skid resistance on the surface treatment pavement is satisfied with the BPN criteria of national highway because of exposed aggregate and crack sill induced pavement deterioration and damage cracks. CONCLUSIONS : The hydrophobic - low viscosity surface treatment material for pavement preventive maintenance is validated on field applicability evaluation based on quantitative analysis of coating thickness and performance analysis using lab and field tests.

Quality Characteristics of Fresh Pasta Noodle Added with Red Hot Pepper Juice (홍고추액을 첨가한 생면 파스타의 품질특성)

  • Kim, Jung-Soo;Hong, Jin-Sook
    • Korean journal of food and cookery science
    • /
    • v.24 no.6
    • /
    • pp.882-890
    • /
    • 2008
  • The present study investigated the influence of different volumes of red hot pepper juice on the quality characteristics of fresh Pasta noodle. Supplementation with 0% (control), 2.5%, 5%, 7.5%, or 10% red hot pepper juice produced similar gelatinization characteristics of peak viscosity, temperature at peak viscosity, hot paste viscosity and numerical value of breakdown. However, increasing concentrations of red hot pepper juice produced progressively and significantly low cold paste viscosity and setback. The chromaticity of wet and cooked noodles was significantly lower in L value and significantly higher in +a and +b values with increasing volumes of red hot pepper juice. The texture of fresh noodles displayed no significant differences in hardness, adhesiveness and chewiness. The springiness and cohesiveness were lower and higher with the increase of added red hot pepper juice, respectively, but the differences just attained significance. For cooked noodles, adhesiveness, springiness, cohesiveness and chewiness tended to be higher with increasing volumes of red hot pepper juice, but again the differences just attained significance. Cooking characteristics of weight, volume, moisture absorptive power and turbidity decreased with increasing volumes of red hot pepper juice. Sensory characteristics of acceptability including appearance, color, flavor, taste, texture and overall-acceptability improved with increasing red hot pepper juice volume, in particular with 5% and 7.5%. Amylograph characteristics for initial paste temperature positively correlated with the texture characteristics for chewiness (p<0.05). Negatively correlated amylograph parameters included texture for springiness with for peak viscosity (p<0.01), texture for adhesiveness with hot paste viscosity (p<0.01) and breakdown with texture for adhesiveness, cohesiveness and chewiness (p<0.05).

Effect of Carbon Black Concentration and Monomer Compositional Ratio on the Flow Behavior of Copoly(styrene/butyl methacrylate) Particles (카본블랙의 농도 및 단량체 구성비에 따른 스티렌-부틸메타크릴레이트 공중합체 입자의 유동성)

  • Park, Moon-Soo;Moon, Ji-Yeon
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • We measured shear viscosity of copoly(styrene(St)/butyl methacrylate(BMA)) (co-PSB) particles, with a capillary rheometer at $170^{\circ}C$, prepared by suspension polymerization with hydrophobic silica as a stabilizer. co-PSB particles with the weight average molecular weights of lower than 74,800 g/mol displayed a Newtonian behavior at low shear rates. With the weight average molecular weight exceeding 136,800 g/mol, co-PSB particles showed shear thinning against shear rates and the absolute value of the slopes between shear viscosity vs. shear rate increased. When the ratio between St and BMA changed from 7/3 to 5/5 to 3/7, shear viscosity and glass transition decreased despite similar molecular weights. When the ratio was 1/9, it showed a large increase in initial shear viscosity despite reduced glass transition. Shear viscosity exhibited an increase in proportion to carbon black concentration. The effect of carbon black concentration on the shear viscosity of co-PSB composites was less pronounced compared to varying molecular weights and/or compositional ratio.

Analysis of Effecting Parameters on Extraction of Soil Contaminants using Vertical Drains - Focusing on Soil and Contaminants Physical Properties (연직배수재에 의한 토양오염물질 추출에 미치는 영향인자 분석 - 토양 및 오염유체의 물성치를 중심으로)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Kang, Byung-Yoon;Kim, Hyun-Tae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.355-360
    • /
    • 2005
  • The properties of contaminants, contaminated soil, and the elapsed time are important factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one $(C/C_0)$ with time and spatial changes in contaminated area with vertical drains. The contaminant concentration ratio $(C/C_0)$ is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil and temperature in ground and unit weight, viscosity of contaminants by using FLUSH1 model. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation using vertical drains is the effective diameter of contaminated soil. It also shows that the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants are, in order, affected to the soil remediation but density of soil is insignificant to the soil remediation.

  • PDF