• 제목/요약/키워드: Inhibition efficiency

검색결과 340건 처리시간 0.02초

섬유상 담체를 이용한 영양염류 제거 및 조류 증식 억제에 관한 연구 (Efficiency of Nutritive Salts Removal and Algae Growth Inhibition Using a Fibrous Carrier)

  • 박신해;강대종;양경순;전수빈;오광중
    • 청정기술
    • /
    • 제21권4호
    • /
    • pp.257-264
    • /
    • 2015
  • 본 연구에서는 일반적인 물리·화학적 조류 증식 억제 방법의 문제점이 보완되어진 자연친화적인 생물학적 억제방법을 이용하고자 하였다. 섬유상 담체들의 생물막 형성 두께와 물리적 특성을 비교한 결과, 폴리에스터 담체가 가장 적절하였다. 이를 이용하여 부영양화 호소에서의 영양염류 제거와 조류증식 억제 효율을 분석하였다. 질소, 인 제거율은 14.59%, 6.36%, 그리고 조류증식 억제효율 비교를 위한 식물플랑크톤 성장 억제률은 77%로 영양염류와 식물플랑크톤 수치가 증가한 대조군에 비해서 높은 효율을 나타냈다. 따라서 본 연구에서는 폴리에스터 섬유상 담체를 적용하여 호소에서 자연친화적인 생물학적 처리가 가능할 것으로 판단된다.

Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution

  • Lemallem, Salah Eddine;Fiala, Abdelali;Ladouani, Hayet Brahim;Allal, Hamza
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.237-253
    • /
    • 2022
  • The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10-3 - 10-3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.

Schiff Bases as Anticorrosive Additives for Mild Steel Corrosion in Acid Media

  • Abirami, M.;Sasikala, S.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2009
  • The influence of Schiff bases on the corrosion inhibition of mild steel in 1 M $H_2SO_4$ have been investigated by weight loss, gasometry, impedance and polarization techniques. The results obtained reveal that these compounds act as good inhibitors. The inhibition efficiency of Schiff bases increased with concentration and synergistically increased on addition of chromate, sulphate and halide ions. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitors are of mixed type but they are more cathodic in nature. The adsorption of these compounds on mild steel surface for both the acids were found to obey Langmuir adsorption isotherm. The surface morphology was studied by SEM and UV reflectance spectra.

Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

  • Bhat, J. Ishwara;Alva, Vijaya D.P.
    • 대한화학회지
    • /
    • 제58권1호
    • /
    • pp.85-91
    • /
    • 2014
  • The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

Kinetic Characterization and Molecular Modeling of $NAD(P)^+$-Dependent Succinic Semialdehyde Dehydrogenase from Bacillus subtilis as an Ortholog YneI

  • Park, Seong Ah;Park, Ye Song;Lee, Ki Seog
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권7호
    • /
    • pp.954-958
    • /
    • 2014
  • Succinic semialdehyde dehydrogenase (SSADH) catalyzes the oxidation of succinic semialdehyde (SSA) into succinic acid in the final step of ${\gamma}$-aminobutyric acid degradation. Here, we characterized Bacillus subtilis SSADH (BsSSADH) regarding its cofactor discrimination and substrate inhibition. BsSSADH showed similar values of the catalytic efficiency ($k_{ca}t/K_m$) in both $NAD^+$ and $NADP^+$ as cofactors, and exhibited complete uncompetitive substrate inhibition at higher SSA concentrations. Further analyses of the sequence alignment and homology modeling indicated that the residues of catalytic and cofactor-binding sites in other SSADHs were highly conserved in BsSSADH.

Corrosion Inhibition Screening of 2-((6-aminopyridin-2-yl)imino)indolin-3-one: Weight Loss, Morphology, and DFT Investigations

  • Nadia Betti;Ahmed A. Al-Amiery
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.10-20
    • /
    • 2023
  • Because of its inexpensive cost, mild steel is frequently employed as a construction material in different industries. Unfortunately, because of its limited resistance to corrosion, a protective layer must be applied to keep it from decaying in acidic or basic environments. The presence of heteroatoms, such as nitrogen, oxygen, and pi-electrons in the Schiff base could cause effective adsorption on the mild steel surface, preventing corrosion. The weight loss method and scanning electron microscopy (SEM) were used to investigate the inhibitory effects of APIDO on mild steel in a 1 M hydrochloric acid environment. The efficiency of inhibition increased as the inhibitor concentration increased and decreased as the temperature increased. The SEM analysis confirmed that the corrosion inhibition of APIDO proceeded by the formation of an organic protective layer over the mild steel surface by the adsorption process. Simulations based on the density functional theory are used to associate inhibitory efficacy with basic molecular characteristics. The findings acquired were compatible with the experimental information provided in the research.

3.5 wt.% NaCl로 오염된 SCP 용액의 부식 개시 완화에 대한 하이브리드 억제제의 효과 (Effect of Hybrid Inhibitor on the Mitigation of Corrosion Initiation in SCP Solution Contaminated 3.5 wt.% NaCl)

  • 트란 득 탄;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.65-66
    • /
    • 2021
  • In this study, the optimum amount of hybrid inhibitors i.e. L-Arginine (LA) and sodium phosphate tribasic dodecahydrate (SP), applied for carbon steel rebar in simulated pore concrete (SCP) solution contaminated with 3.5 wt.% NaCl, was discovered. The corrosion inhibition performance of hybrid inhibitors was investigated by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. The highest corrosion inhibition efficiency was found as 99.52% corresponding to 2% LA and 0.25% SP after 210 h exposure. Anodic type inhibition action was confirmed by potentiodynamic polarization study. Surface studies including scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to figure out the surface morphology of the steel rebar treated with hybrid inhibitors in order to collaborate with electrochemical studies.

  • PDF

객차용 고효율 항균 기능성 필터에 관한 연구 (A Study of high Efficiency anti-Bacteria Filters for Passenger Car)

  • 정우성;박덕신;정진도;류해열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.975-980
    • /
    • 2002
  • We actually installed antibacterial air filter on the air intake route to air conditioner in passenger car and evaluated filters performance on antibacterial effect. And also, antibacterial effect was observed at whole are of filter media by zone of inhibition test. In the evaluation of antibacterial test, it was shown that the air filter has notably sufficient antibacterial efficiency against ordinary filter.

  • PDF

0.25M 황산 용액 상에서의 Imatinib Mesylate에 의한 연강철 부식 억제 (Inhibition of Mild Steel Corrosion in 0.25 M Sulphuric Acid Solution by Imatinib Mesylate)

  • Mohana, K.N.;Shivakumar, S.S.;Badiea, A.M.
    • 대한화학회지
    • /
    • 제55권3호
    • /
    • pp.364-372
    • /
    • 2011
  • 다양한 억제제의 농도, 온도, 유속에서 중량 분석과 변전위 분극법을 이용하여 0.25 M 황산 용액상에 있는 연강철에 대한 imatinib mesylate (IMT)의 부식 억제를 연구하였다. 억제제의 농도가 증가함에 따라 억제 효과가 증가한다는 결과를 얻었다. 연강철 표면 위의 흡착 과정은 Langmuir 흡착 등온선을 따른다. 얻어진 흡착 깁스 자유 에너지의 값은 연강철 위의 IMT의 흡착 과정이 화학흡착이라는 것을 보여준다. 열역학 변수들이 계산되고, 논의되었다. IMT의 HOMO와 LUMO의 전자궤도 밀도 분포는 억제 메커니즘을 논의하는데 이용되었다. FT-IR 분광학과 SEM 이미지는 필름에 흡착된 표면을 분석하기 위해 사용되었다.

Impedance Spectroscopy Studies on Corrosion Inhibition Behavior of Synthesized N,N’-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine for API-5L-X65 Steel in HCl Solution

  • Danaee, I.;Bahramipanah, N.;Moradi, S.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.153-160
    • /
    • 2016
  • The inhibition ability of N,N-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine (DHBP) as a schiff base against the corrosion of API-5L-X65 steel in 1 M HCl solution was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy. Electrochemical impedance studies indicated that DHBP inhibited corrosion by blocking the active corrosion sites. The inhibition efficiency increased with increasing inhibitor concentrations. EIS data was analysed to equivalent circuit model and showed that the charge transfer resistance of steel increased with increasing inhibitor concentration whilst the double layer capacitance decreased. The adsorption of this compound obeyed the Langmuir adsorption isotherm. Gibbs free energy of adsorption was calculated and indicated that adsorption occurred through physical and spontaneous process. The corrosion inhibition mechanism was studied by potential of zero charge. Polarization studies indicated that DHBP retards both the cathodic and anodic reactions through adsorption on steel surface. Scanning electron microscopy was used to study the steel surface with and without inhibitor.