• Title/Summary/Keyword: Inhibition constant

Search Result 193, Processing Time 0.026 seconds

Fed-Batch Sorbose Fermentation Using Pulse and Multiple Feeding Strategies for Productivity Improvement

  • Giridhar, R.;Srivastava, A.K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.340-344
    • /
    • 2000
  • Microbial oxidation of D-sorbitol to L-sorbose by Acetobacter suboxydans is of commercial importance since it is the only biochemical process in vitamin C synthesis. The main bottleneck in the batch oxidation of sorbitol to sorbose is that the process is severely inhibited by sorbitol. Suitable fed-batch fermentation designs can eliminate the inherent substrate inhibition and improve sorbose productivity. Fed-batch sorbose fermentations were conducted by using two nutrient feeding strategies. For fed-batch fermentation with pulse feeding, highly concentrated sorbitor (600g/L) along with other nutrients were fed intermittently in four pulses of 0.5 liter in response to the increased DO signal. The fed-batch fermentation was over in 24h with a sorbose productivity of 13.40g/L/h and a final sorbose concentration of 320.48g/L. On the other hand, in fed-batch fermentation with multiple feeds, two pulse feeds of 0.5 liter nutrient medium containing 600g/L sorbitol was followed by the addition of 1.5 liter nutrient medium containing 600g/L sorbitol at a constant feed rate of 0.36L/h till the full working capacity of the reactor. The fermentation was completed in 24h with an enhanced sorbose productivity of 15.09g/L/h and a sorbose concentration of 332.60g/L. The sorbose concentration and productivity obtained by multiple feeding of nutrients was found to be higher than that obtained by pulse feeding and was therefore a better strategy for fed-batch sorbose fermentation.

  • PDF

Improvement in availability and stability of to 106w by inclusion with $\beta-cyclodextrin$ and its derivatives ($\beta-cyclodextrin$ 및 유도체의 포접체 형성에 의한 LG 106W의 유용성 및 안정성 개선에 관한 연구)

  • 정성훈;이천구;조완구;강세훈
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.120-136
    • /
    • 1999
  • A newly synthesized polyhydroxy aromatic compound(LG 106w) has good skin lightening effect. Inclusion complexation of LG 106w with $\beta$-cyclodextrin and its hydroxypropyl and dimethyl derivatives was studied by the solubility method, scanning electron microscopy and differential thermal analysis. A relationship between host and guest was clearly reflected in the magnitude of the stability constant(DM-$\beta$> HP-$\beta$>$\beta$ -cyclodextrin). Formulation problems, which resulted from its very low solubility in aqueous solution, were resolved by the inclusion formation. LG 106W from inclusions is much more water-soluble than pure one. The improvement of pH and temperature stability correlated with the increased solubility was also observed. Inclusion complex of LG 106w had similar activity to pure LG 106w on the inhibition of melanin synthesis in B-16 melanoma cell but showed lower irritation on cultured cell test in vitro. According to the results, cyclodextrins might be one of the reliable candidates for improving the availability of LG 106w.

  • PDF

Phytol, SSADH Inhibitory Diterpenoid of Lactuca sativa

  • Bang, Myun-Ho;Choi, Soo-Young;Jang, Tae-O;Kim, Sang-Kook;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Park, Jin-Seu;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.643-646
    • /
    • 2002
  • The succinic semialdehyde dehydrogenase (SSADH) inhibitory component was isolated from the EtOAc fraction of Lactuca sativa through repeated column chromatography; then, it was identified as phytol, a diterpenoid, based on the interpretation of several spectral data. Incubation of SSADH with the phytol results in a time-dependent loss of enzymatic activity, suggesting that enzyme modification is irreversible. The inactivation followed pseudo-first-order kinetics with the second-rate order constant of $6.15{\times}10^{-2}mM^{-1}min^{-1}.$ Complete protection from inactivation was afforded by the coenzyme $NAD^{+}$, whereas substrate succinic semialdehyde failed to prevent the inactivation of the enzyme; therefore, it seems likely that phytol covalently binds at or near the active site of the enzyme. It is postulated that the phytol is able to elevate the neurotransmitter GABA levels in central nervous system through its inhibitory action on one of the GABA degradative enzymes, SSADH.

Production of Cyclodextrin using Membrane-Enzyme Reactor (막-효소 반응기를 이용한 Cyclodextrin의 생산)

  • 홍준기;염경호
    • Membrane Journal
    • /
    • v.8 no.3
    • /
    • pp.170-176
    • /
    • 1998
  • A study on the bioconversion of soluble starch to cyclodextrin(CD) homologue by CGTase was performed in the membrane-enzyme reactor equipped with a dead-end type membrane module. in the batch reactor, the total conversion of soluble starch to CD homologue was decreased rapidly from a maximum value of 45 % with increasing reaction time due to the product inhibition and breakdown of CD homologue to the reducing sugars. However, in the membrane-enzyme reactor, the total conversion of soluble starch was maintained at a constant value of 35 % throughout the reaction, since the membrane(MWCO = 10,000) promptly separated CD homologue from the reaction mixture. After the macdon for 24 hr in the membrane-enzyme reactor using a 10 % soluble starch solution, the cumulative production amount of CD homologue was about 3.7 kg/m$^2$ at the operating pressure of 2 atm.

  • PDF

BEHAVIORS OF MOLYBDENUM IN UO2 FUEL MATRIX

  • Ha, Yeong-Keong;Kim, Jong-Goo;Park, Yang-Soon;Park, Soon-Dal;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.309-316
    • /
    • 2011
  • Molybdenum is the most abundant fission product since its fission yield is equivalent to that of xenon, and it has a very special role in the chemistry of nuclear fuel because it influences the oxygen potential of $UO_2$ fuel. In this study, the distribution of molybdenum in spent $UO_2$ fuel specimens with 33.3, 41.0 and 57.6 GWd/tU burnup was measured by a LA-ICP-MS system and the reproducibility of the measured data was obtained. The Mo distribution was almost constant along the radius of a fuel except an increase at the periphery of the fuel. It showed a drop in reproducibility with relatively high deviation of measured values for the highest burnup fuel. To explain this, the state of molybdenum in a $UO_2$ matrix and its effect on the oxidation behavior of $UO_2$ were investigated. The low reproducibility was explained by the segregation of molybdenum, and the inhibition of oxidation by the molybdenum was also observed.

Effect of Cultivar and Processing on the Hemagglutinin Activity of Soybean

  • Felipe, Penelope;Sok, Dai-Eun;Heo, Ok-Soon;Kim, Hyoung-Chin;Yoon, Won-Kee;Kim, Hwan-Mook;Kim, Mee-Ree
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.91-95
    • /
    • 2006
  • Effects of cultivars, cooking, and processing on hemagglutinin activity were evaluated by observing macroscopic hemagglutination using serial twofold dilution of trypsinized human blood type-O or rabbit blood. Hemagglutinin activity was expressed as maximal geometric dilution fold. Agglutination of rabbit blood was more sensitive compared to human blood. Hemagglutinin activities of glyphosate-tolerant soybean, HS2906, and imported conventional soybeans were not statistically different, although significant differences were observed among conventional soybean cultivars cultivated in Korea (286 to 1535 HU/mg protein). Time required to reach fifty percent inhibition of hemagglutinin activity ($IT_{50}$) value decreased with increasing cooking temperature and pressure. Most effective conventional cooking method to inhibit hemagglutinin activity was pressure-cooking ($IT_{50}$: 1.36 min). Calculated activation energy based on reaction rate constant was 4.88 kcal. No hemagglutinin activities were detected in processed soybean products such as tofu, soybean paste, and soysauce.

Drug Interaction between Flavone and Paclitaxel in Rats (프라본과 파크리탁셀과의 약물상호작용)

  • 최준식;이진환
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • The purpose of this study was to investigate the effect of flavone (20 mg/kg) on the pharmacokinetic parameters and the bioavailability of paclitaxel (40 mg/kg) orally coadministered in rats. The plasma concentration of paclitaxel in combination with flavone was increased significantly (coadministration p<0.05, pretreatment p<0.0l) compared to that of control. Area under the plasma concentration-time curve (AVC) of paclitaxel with flavone was significantly (coadministration p<0.05, pretreatment p<0.0l) higher than that of control. Peak concentration (Cmax) of paclitaxel with flavone were significantly increased (coadministration p<0.05, pretreatment p<0.01) compared to that of control. Time to peak concentration (Tmax) of paclitaxel with flavone decreased significantly (p<0.05) than that of control. The total body clearance (CLt) and elimination rate constant ($\beta$) of paclitaxel with flavone were significantly reduced (p<0.05) compared to those of control. Half-life (t$_{1}$2/) of paclitaxel with flavone was significantly prolonged (p<0.05) compared to that of control. Based on these results, it might be concluded that flavone may enhance bioavailability of paclitaxel through the inhibition of cytochrome P450 and P-glycoprotein, which are engaged in paclitaxel absorption and metabolism in liver and gastrogintestinal mucosa, respectively.

Two-Phase Chemical Oxidation of Pyrene

  • Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.247-253
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons (PAHs) are a major concern because of their potential mutagenic and carcinogenic risks to human beings. One of these harmful, yet commonly observed PAHs is pyrene. Pyrene is one of the 16 PAHs listed by the United States Environmental Protection Agency as priority pollutants. The purposes of this research are to develop a method of pretreatment for PAH contaminants prior to a typical biological treatment and to demonstrate the biodegradablity of these compounds. Since pyrene is non-polar, hexane was chosen as a solvent to effectively dissolve pyrene. Pyrene solutions were treated with ozone, as it has hish oxidation capacity and electrophilic character. The intermediates and byproducts of pyrene were dissolved in alkaline water at pH 11.4 and neutralized to test for $BOD_5$, COD, and toxicity. These solutions were further ozonated and assessed of biodegradability. The first-order rate constant to was found to be between $0.121day^{-1}$ and $0.081 day^{-1}$, depending on the duration of reozonation. The $BOD_5/COD$ ratio was found to 0.66. The toxicity test showed that after 10 min of reozonation time, the byproducts and intermediates of pyrene were within the lion-toxic range of ${\pm}10%$ inhibition for E-Coli bacteria.

Biomolecular Strategies for Preparation of High Quality Surimi-Based Products

  • Nakamura Soichiro;Ogawa Masahiro
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • There exist two interesting phenomena in making seafood products from surimi. When salted surimi is kept at a constant low temperature $(4\~40^{\circ}C)$, its rheological properties change from sol to gel, which is called 'setting'. Seafood processors can exploit changes that occur during setting in preparation of surimibased products, because heating at high temperatures, after the pre-heating during the setting process, enhances the gel-strength of salted surimi. Contrarily, when salted surimi or low-temperature set gel is heated at moderate temperatures $(50\~70^{\circ}C)$, a deterioration of gel is observed. The phenomenon is termed 'modori'. In the modori temperature range, heat-stable cysteine proteinases such as cathepsin B, H, Land L-Iike hydrolyze the myosins responsible for gel-formation, resulting in gel weakening modori. This article reviews molecular events occurring during gel setting that improve the quality of surimi-based products, and inhibition of modori by applying proteinase inhibitors. Application of recombinant protein technology to surimi-based products is introduced and its prospects for practical use are discussed.

Purification, Characterization, and Inhibitory Activity of Glassfish (Liparis tanakai) Egg High Molecular Weight Protease Inhibitor Against Papain and Cathepsin

  • Ustadi Ustadi;You Sang-Guan;Kim Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.524-530
    • /
    • 2006
  • Two protease inhibitors of 67 and 18 kDa, respectively, were purified from the eggs of glass fish, Liparis tanakai, by affinity chromatography and electro-elution method. The high molecular weight (HMW) protein was purified with a specific inhibitory activity, yield, and purity of 18.46 U/mg, 0.07%, and 131.86 fold, respectively, and was further characterized: Optimal temperature and pH for inhibitory activity of the HMW glassfish egg protease inhibitor were $40^{\circ}C$ and pH 6, respectively, and it was stable between $5^{\circ}C\;and\;50^{\circ}C$ in the pH range of 5-6 with maximal stability at pH 6. It was shown to be a competitive inhibitor against papain with an inhibition constant $(K_i)$ of 97.02 nM. Moreover, the 67 kDa protein inhibited cathepsin, a cysteine protease, more effectively than did an egg-white protease inhibitor. The HMW glassfish egg protease inhibitor was classified as a member of the family III (kininogen).