• 제목/요약/키워드: Inhibition ELISA

검색결과 276건 처리시간 0.029초

지이초(地耳草) 추출물이 OVA로 천식이 유발된 생쥐의 폐세포에 미치는 영향 (Effects of Extract of Hyperici Japonici Herba on Lung Cells in Asthma-indused Mice by OVA Exposure)

  • 이영용;서영배;이영철;서부일;노성수
    • 대한본초학회지
    • /
    • 제23권1호
    • /
    • pp.75-83
    • /
    • 2008
  • Objectives : The present study was carried out to investigate the effect of Hyperici Japonici Herba on the proliferation and activation of eosinophils which were prepared from lung cells of asthma-induced mice by ovalbumin(OVA) treatment. Methods : C57BL/6 mouse was exposed to OVA three times a week for 6 weeks. The mouse lung tissues were dissected out, chopped and dessiciated with collagenase(1${\mu}g$/ml). Eosinophils were activated by rIL-3/rmIL-5 co-treatments. The lung cells were treated with extract of Hyperici Japonici Herba(EHH), incubated for 48 hr at $37^{\circ}C$, and analyzed by flow cytometer. ELBA, RT-PCR, immunocytochemistry stain. Results : The cell number ratio of granulocyte, $CD3e^-$/$CCR3^+$, $CD3e^+$/$CD69^+$, $CD4^+$, $CD23^+$/$B220^+$ cells was increased in rmIL-5/rIL-3 treated control group compared to the normal group. Cells numbers in the experimental animal group treated with EHH was all decreased. In ELISA analysis, IL-4, IL-5, IL-13 protein levels and histamine release level were greatly increased in the control group compared to the normal animal group, then significantly decreased in the experimental group with 100 ${\mu}g$/ml of EHH treatment. In RT-PCR analysis, the HT value of IL-4, IL-5, IL-13, CCR3, Eotaxin were increased in the control group compared to the normal animal group, then decreased in the experimental group with 100 ${\mu}g$/ml of EHH treatment. And eosinophil proliferation levels were 18847${\pm}$1527(cpm) in the control group, 4676${\pm}$972(cpm) in the positive control group, and 8675${\pm}$159(cpm), 11352${\pm}$1005(cpm), 14325${\pm}$677(cpm) in the experimental group with 100 ${\mu}g$/ml, 10 ${\mu}g$/ml, 1 ${\mu}g$/ml of EHH treatment. Conclusions : The present data suggested that Hyperici Japonici Herba may have an effects on the inhibition of parameters associated with asthma responses in eosinpophils, and thus implicate the possibility for the clinical application of EHH.

  • PDF

교맥의 RBL-2H3 비만세포 탈과립과 cytokine 생산 억제 효과 (Inhibitory effect of Fagopyrum esculentum on degranulation and production of cytokine in RBL-2H3 cells)

  • 강경화;이승연
    • 한방안이비인후피부과학회지
    • /
    • 제25권3호
    • /
    • pp.1-12
    • /
    • 2012
  • Objectives : Fagopyrum esculentum(FE) has been used for removal of inflammation of internal organs and treatment of sore and ulcer by heat toxin in Korean herbal medicines. In this study, To investigated the protective effect of FE on allergic response, we determined whether FE inhibits allergic response. Methods : The effect of FE was analyzed by ELISA, RT-PCR and Western blot in RBL-2H3 cells. We investigated cell viability, ${\beta}$-hexosaminidase, as a marker of degranulation, cytokne, and intracellular ROS and MAPK and NF-${\kappa}B$ signaling. Results : We found that FE suppressed ${\beta}$-hexosaminidase release, the production of IL-4 and TNF-${\alpha}$ and intracellular ROS level in RBL-2H3 by the anti-DNP IgE plus DNP-HSA stimulation. FE also significantly inhibited cytokine mRNA expressions, such as IL-$1{\beta}$, IL-2, IL-3, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ and GM-CSF in RBL-2H3. In addition, PF suppressed the phospholyation of ERK1/2, JNK1/2, p38 and $I{\kappa}B{\alpha}$ and NF-${\kappa}B$ signal transduction pathway. Conclusions : Our results indicate that FE protects against allergic response and exerts an anti-inflammatory effect through the inhibition of degranulation and production of cytokines and ROS via the suppression MAPK and NF-${\kappa}B$ of signal transduction. Abbrevations : FE, Fagopyrum esculentum; RBL-2H3, rat basophilic leukemia cell line; ROS, reactive oxygen species; MAPK, Mitogen-activated protein kinase; $NF{\kappa}B$, nuclear factor ${\kappa}B$; $TNF{\alpha}$, Tumor necrosis factor alpha; GM-CSF, Granulocyte macrophage colony-stimulating factor; ERK, extracellular-signal-regulated kinase; JNK, c-Jun NH2-terminal kinase; p38, p38 MAP kinase; $I{\kappa}B{\alpha}$, inhibitory-kappa B alpha.

절패모(浙貝母)의 항염 및 진해거담 효과에 대한 실험연구 (Experimental Study on Anti-inflammatory, Antitussive, and Expectoration Effects of Friltillariae Thunbergii Bulbus)

  • 김진후;양원경;이수원;유이란;김승형;박양춘
    • 대한한방내과학회지
    • /
    • 제41권3호
    • /
    • pp.339-349
    • /
    • 2020
  • Objective: This study aimed to evaluate anti-inflammatory and antitussive expectoration effects of Friltillariae Thunbergii Bulbus (FTB) in a mouse model. Materials and Methods: To evaluate the anti-inflammatory effects of the FTB, we conducted in vitro experiments using RAW264.7 cells. An MTT assay and enzyme-linked immunosorbent assay (ELISA) were carried out to examine the anti-inflammatory effects of FTB. The expectorant effect on phenol red secretion, the antitussive effect on cough induced by ammonia solution, and leukocyte increased inhibition effects in acute airway inflammation in the animal model were confirmed. Results: FTB did not show cytotoxicity in the experimental group at 10, 30, 50, 100, 300, or 500 ㎍/ml and significantly inhibited the increase of NO, TNF-α and IL-6 in the experimental groups at 30, 50, 100, 300, and 500 ㎍/ml concentrations. In sputum, cough, and acute airway inflammation animal models, FTB significantly increased phenol red secretion in the 400 mg/kg administration group. FTB significantly reduced the number of coughs and significantly increased cough delay time in both 200 and 400 mg/kg dose groups. FTB decreased the white blood cell count in BALF (bronchoalveolar lavage fluid) in the 400 mg/kg administration group. Conclusion: Our study revealed that FTB elicits antitussive and expectorant effects by inhibiting inflammatory cytokines, increasing sputum secretion, suppressing cough, and reducing inflammatory cells. We concluded that FTB is a highly promising agent for respiratory tract infection with therapeutic opportunities.

Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model

  • Song, Chin-Hee;Kim, Nayoung;Sohn, Sung Hwa;Lee, Sun Min;Nam, Ryoung Hee;Na, Hee Young;Lee, Dong Ho;Surh, Young-Joon
    • Gut and Liver
    • /
    • 제12권6호
    • /
    • pp.682-693
    • /
    • 2018
  • Background/Aims: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods: The effects of $17{\beta}$-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-${\kappa}B$, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions: E2 acts through the estrogen receptor ${\beta}$ signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.

귀전우(鬼箭羽)의 in vitro 및 in vivo에서의 염증억제효과 (Anti-inflammatory effect of Euonymi Lignum Suberalatum in LPS-activated Raw 264.7 cells and CA-induced paw edema rat model)

  • 전창권;박상미;박정아;변성희;김상찬
    • 대한한의학방제학회지
    • /
    • 제27권2호
    • /
    • pp.101-120
    • /
    • 2019
  • PURPOSE : Euonymi Lignum Suberalatum (EL) is the stem fin of Euonymi alatus. In traditional Korean medicine, EL is used for treatment of uterine bleeding, metritis and static blood. Recently, many studies have reported several pharmacological effects of EL including anticancer, antimicrobial, antidiabetic activity, and anti-oxidative stress. However, the mechanisms underlying anti-inflammatory effects by the EL is not established. METHODS : To investigate anti-inflammatory effects of Euonymi Lignum Suberalatum Water (ELWE), Raw 264.7 cells were pre-treated with $10-300{\mu}g/mL$ of ELWE, and then exposed to $1{\mu}g/mL$ of LPS. Levels of NO, IL-6, $IL-1{\beta}$ and $TNF-{\alpha}$ were detected by ELISA kit. Expression of pro-inflammatory proteins were determined by immunoblot analysis. To evaluate the anti-inflammatory effect in vivo, rat paw edema volume, and expressions of COX-2 and iNOS proteins in carrageenan (CA)-induced rat paw edema model. RESULTS : NO production activated by LPS, was decreased by $30-300{\mu}g/mL$ of ELWE. Production of inflammatory mediators such as $TNF-{\alpha}$, ILs, $PGE_2$ were decreased by ELWE 100 and $300{\mu}g/mL$. In addition, ELWE reduced LPS-mediated iNOS and COX-2 expression. Moreover, ELWE increased $I-{\kappa}B{\alpha}$ expression in cytoplasm and decreased $NF-{\kappa}B$ expression in nucleus. In vivo study, ELWE reduced the increases of paw swelling, and expression of iNOS and COX-2 proteins in paw edema induced by CA injection. CONCLUSION : The results indicate that ELWE could inhibit the acute inflammatory response, via modulation of $NF-{\kappa}B$ activation. Furthermore, inhibition of rat paw edema induced by CA is considered as clear evidence that ELWE may be a useful source to treat acute inflammation.

발효차의 생리활성과 영양성분 및 카페인 분석 (Biological activity, nutrients and caffeine analysis of fermented tea)

  • 김태희;권예은;박선민;김명주;안선미;홍은경;기호삼;최선은
    • 융합정보논문지
    • /
    • 제11권3호
    • /
    • pp.194-204
    • /
    • 2021
  • 최근 국내에서 발효차에 대한 수요도가 높아진 것에 비해 국내는 발효차 연구에 대한 역사가 짧고, 해외 유명 발효차들과의 과학적인 비교분석결과가 전무한 실정이다. 본 연구에서는세계 3대 홍차인 스리랑카 우바, 중국의 기문, 인도의 다즐링 홍차와 함께 전남 순천에서 생산되는 발효차를 항산화와 항염증 활성 검정 및 발효차의 주성분의 규명 및 함량 분석을 HPLC 및 TOF-MS 등의 분석을 통해서 실시 하였다. 항산화 활성 검정은 DPPH·ABTS 라디컬 소거능 2종의 실험을 실시하였고, 항염증 활성은 NO 생성 억제능을 통해서 실시 하였으며, 세계 3대 홍차와의 성분 분석을 위해서 총페놀 함량과 기호성 음식으로 분류되는 차의 특성상 사람이 느낄 수 있는 입맛에 관계된 성분들을 검토하기 위해서 탄닌산, 유리당, 유기산, 카페인 분석 등을 실시하였다. 이상의 결과를 종합하였을 때, 국내 자생하고 있는 야생 차나무로부터 생산된 발효차는 각각의 생리활성과 유효물질들의 함량을 과학적으로 검토한 결과, 세계 유명 3대 홍차와 비교하였을 때 우수한 생리활성과 유용한 성분들이 확인되었다.

Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling

  • Gao, Yan;Yuan, Ding;Gai, Liyue;Wu, Xuelian;Shi, Yue;He, Yumin;Liu, Chaoqi;Zhang, Changcheng;Zhou, Gang;Yuan, Chengfu
    • Journal of Ginseng Research
    • /
    • 제45권3호
    • /
    • pp.408-419
    • /
    • 2021
  • Background: The decreased renal function is known to be associated with biological aging, of which the main pathological features are chronic inflammation and renal interstitial fibrosis. In previous studies, we reported that total saponins from Panax japonicus (SPJs) can availably protect acute myocardial ischemia. We proposed that SPJs might have similar protective effects for aging-associated renal interstitial fibrosis. Thus, in the present study, we evaluated the overall effect of SPJs on renal fibrosis. Methods: Sprague-Dawley (SD) aging rats were given SPJs by gavage beginning from 18 months old, at 10 mg/kg/d and 60 mg/kg/d, up to 24 months old. After the experiment, changes in morphology, function and fibrosis of their kidneys were detected. The levels of serum uric acid (UA), β2-microglobulin (β2-MG) and cystatin C (Cys C) were assayed with ELISA kits. The levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), inflammatory factors and changes of oxidative stress parameters were examined. Results: After SPJs treatment, SD rats showed significantly histopathological changes in kidneys accompanied by decreased renal fibrosis and increased renal function; As compared with those in 3-month group, the levels of serum UA, Cys C and β2-MG in 24-month group were significantly increased (p < 0.05). Compared with those in the 24-month group, the levels of serum UA, Cys C and β2-MG in the SPJ-H group were significantly decreased. While ECM was reduced and the levels of MMP-2 and MMP-9 were increased, the levels of TIMP-1, TIMP-2 and transforming growth factor-β1 (TGF-β1)/Smad signaling were decreased; the expression level of phosphorylated nuclear factor kappa-B (NF-κB) was down-regulated with reduced inflammatory factors; meanwhile, the expression of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling was aggrandized. Conclusion: These results suggest that SPJs treatment can improve age-associated renal fibrosis by inhibiting TGF-β1/Smad, NFκB signaling pathways and activating Nrf2-ARE signaling pathways and that SPJs can be a potentially valuable anti-renal fibrosis drug.

EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1

  • Xiang, Yaoxian;Zhu, Lei;He, Zijian;Xu, Lei;Mao, Yuhang;Jiang, Junjian;Xu, Jianguang
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권6호
    • /
    • pp.790-800
    • /
    • 2022
  • Objective : EID3 (EP300-interacting inhibitor of differentiation) was identified as a novel member of EID family and plays a pivotal role in colorectal cancer development. However, its role in glioma remained elusive. In current study, we identified EID3 as a novel oncogenic molecule in human glioma and is critical for glioma cell survival, proliferation and invasion. Methods : A total of five patients with glioma were recruited in present study and fresh glioma samples were removed from patients. Four weeks old male non-obese diabetic severe combined immune deficiency (NOD/SCID) mice were used as transplant recipient models. The subcutaneous tumor size was calculated and recorded every week with vernier caliper. EID3 and AMP-activated protein kinase α1 (AMPKα1) expression levels were confirmed by real-time polymerase chain reaction and Western blot assays. Colony formation assays were performed to evaluate cell proliferation. Methyl thiazolyl tetrazolium (MTT) assays were performed for cell viability assessment. Trypan blue staining approach was applied for cell death assessment. Cell Apoptosis DNA ELISA Detection Kit was used for apoptosis assessment. Results : EID3 was preferentially expressed in glioma tissues/cells, while undetectable in astrocytes, neuronal cells, or normal brain tissues. EID3 knocking down significantly hindered glioma cell proliferation and invasion, as well as induced reduction of cell viability, apoptosis and cell death. EID3 knocking down also greatly inhibited tumor growth in SCID mice. Knocking down of AMPKα1 could effectively rescue glioma cells from apoptosis and cell death caused by EID3 absence, indicating that AMPKα1 acted as a key downstream regulator of EID3 and mediated suppression effects caused by EID3 knocking down inhibition. These findings were confirmed in glioma cells generated patient-derived xenograft models. AMPKα1 protein levels were affected by MG132 treatment in glioma, which suggested EID3 might down regulate AMPKα1 through protein degradation. Conclusion : Collectively, our study demonstrated that EID3 promoted glioma cell proliferation and survival by inhibiting AMPKα1 expression. Targeting EID3 might represent a promising strategy for treating glioma.

LPS로 활성화된 RAW 264.7 cell에서 NF-𝜅B억제를 통한 육일산(六一散) 물추출물의 염증억제효과 (Anti-inflammatory Effect of Yukil-san Water Extract on LPS-induced RAW 264.7 Cells)

  • 이창욱;박상미;김은옥;변성희;김상찬
    • 대한한의학방제학회지
    • /
    • 제30권2호
    • /
    • pp.45-57
    • /
    • 2022
  • Objectives : Yukil-san (YIS, 六一散; Liu yi san) is composed of Talcum and Glycyrrhizae Radix, the name is said to be derived from the proportion of the two herbal components of the formula. The YIS originated from 'Formulas from the discussion illuminating the Yellow Emperor's Basic Question'(黃帝素問宣明論方; Huang di su wen xuan ming lun fang) written by Liu Wan-Su (劉完素). YIS could clear summerheat, resolve dampness, and augment the qi. This formula may be used to treat the common cold, influenza, acute gastroenteritis, cystitis, urethritis and bacillary dysentery. But, there is insufficient of study about the effects of YIS on the anti-inflammatory activities. The present study evaluated the anti-inflammatory effects of YIS on lipopolysaccharide (LPS)-activated RAW 264.7 cells. Methods : Cell viability was assessed by MTT assay and nitric oxide (NO) was evaluated by measuring the nitrite content in culture medium. Pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β and IL-6 were quantified by ELISA kit. The expression of proteins related with nuclear factor-κB (NF-κB) pathway and inducible NO synthase (iNOS) were assessed by western blot analysis. Results : YIS significantly inhibited the expression of iNOS increased by LPS, and thus significantly inhibited the production of NO. In addition, YIS significantly inhibited pro-inflammatory cytokines. In the regulation of inflammation, NF-κB pathway plays a crucial role. YIS inhibited the expression of p-IκBα and thus inhibited the translocation of NF-κB to the nucleus. Conclusions : These results suggest that YIS ameliorates inflammatory response in LPS-activated RAW 264.7 cells through the inhibition of inflammatory mediators, via suppression of the NF-κB pathway. Therefore, this study provides objective evidence for the anti-inflammatory effect of YIS including the underlying mechanisms.

HaCaT 세포와 RBL2H3 세포에서 패모 추출물의 알레르기 염증 완화 효과 (Effect of Fritillariae Thunbergii Bulbus for Allergic Inflammation on HaCaT and RBL2H3 Cells)

  • 김은영;이비나;김재현;홍수연;김민선;박재호;김좌진;손영주;정혁상
    • 대한본초학회지
    • /
    • 제34권1호
    • /
    • pp.23-31
    • /
    • 2019
  • Objectives : The aim of this study was to investigate the effect for allergic-inflammation of Fritillariae Thunbergii Bulbus (FTB) on HaCaT cells and RBL2H3 cells. Methods : To investigate the effects of FTB for anti-inflammation in HaCaT cells, the cells were pretreated with FTB for 1h and then stimulated with $TNF-{\alpha}/IFN-{\beta}$ for 24h. Then thymus and activation-regulated chemokine (TARC) and Macrophage-derived chemokine (MDC) levels were analyzed with ELISA kit. Also to investigate the effect of skin barrier protein, the cells were treated with FTB of various concentrations, and then cells were harvested, expressions of skin barrier protein were measured with RT-PCR. To investigate the effects of FTB for anti-allergy in RBL2H3 cells, the cells were pre-treated with FTB for 1h, and then stimulated with A23187 for 30 min. ${\beta}$-hexosaminidase, IL-4 and $TNF-{\alpha}$ were measured using cultured media. The cells were harvested to analyze the mechanism of the effect for FTB via Western blot. Results : FTB did not show cytotoxicity in HaCaT and RBL2H3. In HaCaT cells, FTB significantly suppressed the expression of TARC, MDC at a dose-dependent manner and markedly increased formation of the skin barrier proteins. In RBL2H3 cells, FTB decreased release of the ${\beta}$-hexosaminidase, IL-4 and $TNF-{\alpha}$ in RBL2H3 through inhibition of the phosphorylation of JNK and p38, which are include in the signaling mechanism of MAPK Conclusion : These results indicate that FTB has an anti-inflammatory effect on the allergic response through blocking MAPK pathway. This suggest that FTB could be a therapeutic agent for allergic response.