• Title/Summary/Keyword: Inhalation scan

Search Result 25, Processing Time 0.033 seconds

Comparison of Inhalation Scan and Perfusion Scan for the Prediction of Postoperative Pulmonary Function (수술후 폐기능 변화의 예측에 대한 연무 흡입스캔과 관류스캔의 비교)

  • Cheon, Young-Kug;Kwak, Young-Im;Yun, Jong-Gil;Zo, Jae-Ill;Shim, Young-Mog;Lim, Sang-Moo;Hong, Sung-Woon;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.2
    • /
    • pp.111-119
    • /
    • 1994
  • Background: Because of the common etiologic factor, such as smoking, lung cancer and chronic obstructive pulmonary disease are often present in the same patient. The preoperative prediction of remaining pulmonary function after the resectional surgery is very important to prevent serious complication and postoperative respiratory failure. $^{99m}Tc$-MAA perfusion scan has been used for the prediction of postoperative pulmonary function, but it may be inaccurate in case of large V/Q mismatching. We compared $^{99m}Tc$-DTPA radioaerosol inhalation scan with $^{99m}Tc$-MAA perfusion scan in predicting postoperative lung function. Method: Preoperative inhalation scan and/or perfusion scan were performed and pulmonary function test were performed preoperatively and 2 month after operation. We predicted the postoperative pulmonary functions using the following equations. Postpneurnonectomy $FEV_1$=Preop $FEV_1x%$ of total function of lung to remain Postlobectomy $FEV_1$=Preop $FEV_1{\times}$(% of total 1-function of affected lung${\times}$$\frac{Number\;of\;segments\;to\;be\;resected}{Number\;of\;segments\;of\;affected\;lung})$ Results: 1) The inhalation scan showed good correlations between measured and predicted $FEV_1$, FVC and $FEF_{25-75%}$. (correlation coefficiency; 0.94, 0.91, 0.87 respectively). 2) The perfusion scan also showed good correlations between measured and predicted $FEV_1$, FVC and $FEF_{25-75%}$. (correlation coefficiency; 0.86, 0.72, 0.87 respectively). 3) Among three parameters, $FEV_1$ showed the best correlations in the prediction by lung scans. 4) Comparison between inhalation scan and perfusion scan in predicting pulmonary function did not show any significant differneces except FVC. Conclusion: The inhalation scan and perfusion scan are very useful in the prediction of postoperative lung function and don't make a difference in the prediction of pulmonary function a1though the former showed a better correlation in FVC.

  • PDF

Scintigraphic Evaluation of Inhalation Injury in Fire Victims (화재사고시 흡입에 의한 기도손상의 핵의학적 평가)

  • Chun, Kyung-Ah;Cho, Ihn-Ho;Won, Gyu-Jang;Lee, Hyung-Woo;Shin, Kyung-Chul;Jeong, Jin-Hong;Lee, Gwan-Ho
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • Purpose: Conventional chest X-ray and pulmonary function test cannot sensitively detect inhalation injury. Bronchoscopy is known to be the gold standard but it is invasive method. We evaluated whether lung inhalation/perfusion scans can sensitively detect inhalation injury of fire victims. Materials and Methods: Nineteen patients (male 9, female 10, mean age 31.6 yr) of fire victims were enrolled in this study. Inhalation lung scan was performed 2 days later after inhalation injury with $^{99m}Tc$-technegas. Perfusion lung scan was performed 4 days later with $^{99m}Tc$- MAA (macroaggregated albumin). Follow up lung scans were performed 16 and 18 days later for each. Chest X-ray was performed in all patients and bronchoscopy was performed in 17 of 19 patients at the same period. Pulmonary function test was performed in 9 patients. Results: Four of 19 patients showed inhalation and perfusion defects and one showed inhalation defect but, normal perfusion scan findings. These five patients with abnormal scan findings showed abnormal bronchoscopic findings and severe respiratory symptoms. On chest X-ray, 2 of them had pulmonary tuberculosis and one of them showed pulmonary congestion. FEV1 /FVC was abnormal in 3 patients. On the follow up scan, all patients with abnormal initial scan findings showed improved findings and they had improved clinical state. Conclusion: Inhalation/perfusion lung scans can detect inhalation burn injury noninvasively in early stage and may be useful in therapeutic decision making and follow up of patients.

Hot Spots on Tc-99m MAA Perfusion Lung Scan (Tc-99m 거대응집알부민을 이용한 폐관류 스캔에서 관찰되는 다발성 열소)

  • Lim, Seok-Tae;Sohn, Myung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.4
    • /
    • pp.288-290
    • /
    • 2001
  • A 61 year-old woman underwent perfusion and inhalation lung scan for the evaluation of pulmonary thromboembolism. Tc-99m MAA perfusion lung scan showed multiple round hot spots in both lung fields. Tc-99m DTPA aerosol inhalation lung scan and chest radiography taken at the same time showed normal findings (Fig. 1, 2). A repeated perfusion lung scan taken 24 hours later demonstrated no abnormalities (Fig. 3). Hot spots on perfusion lung scan can be caused by microsphere clumping due to faulty injection technique or by radioactive embolization from upper extremity thrombophlebitis after injection. Focal hot spots can signify zones of atelectasis, where the hot spots probably represent a failure of hypoxic vasoconstriction. Artifactual hot spots due to microsphere clumping usually appear to be round and in peripheral location, and the lesions due to a loss of hypoxic vasoconstriction usually appear to be hot uptakes having linear $borders^{1-3)}$. Although these artifactual hot spots have been well-known, we rarely encounter them. This report presents a case with artifactual hot spots due to microsphere clumping on Tc-99m MAA perfusion lung scan.

  • PDF

A Dual Lung Scan for the Evaluation of Pulmonary Function in Patients with Pulmonary Tuberculosis before and after Treatment (폐결핵치료전후(肺結核治療前後) 방사성동위원소(放射性同位元素)스캔에 의(依)한 폐기능(肺機能)의 비교(比較))

  • Rhee, Chong-Heon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.2
    • /
    • pp.1-25
    • /
    • 1967
  • In 20 normal cases and 39 pulmonary tuberculosis cases, regional pulmonary arterial blood flow measurements and lung perfusion scans by $^{131}I$-Macroaggregated albumin, lung inhalation scans by colloidal $^{198}Au$ and spirometries by respirometer were done at the Radiological Research Institute. The measured lung function tests were compared and the results were as the following: 1. The normal distribution of pulmonary blood flow was found to be $54.5{\pm}2.82%$ to the right lung and $45.5{\pm}2.39%$ to the left lung. The difference between the right and left pulmonary arterial blood flow was significant statistically (p<0.01). In the minimal pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be $52.5{\pm}5.3%$ to the right lung and $47.5{\pm}1.0%$ to the left lung when the tuberculous lesion was in the right lung, and $56.2{\pm}4.4%$ to the right lung and $43.8{\pm}3.1%$ to the left lung when the tuberculous lesion was in the left lung. The difference of pulmonary arterial blood flow between the right and left lung was statistically not significant compared with the normal distribution. In the moderately advanced pulmonary tuberculosis, the average distripution of pulmonary arterial blood flow was found to be $26.9{\pm}13.9%$ to the right lung and $73.1{\pm}13.9%$ to the left lung when the tuberculous lesion was more severe in the right lung, and $79.6{\pm}12.8%$ to the right lung and $20.4{\pm}13.0%$ to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved, the average distribution of pulmonary arterial blood flow was found to be $49.5{\pm}8.01%$ to the right lung and $50.5{\pm}8.01%$ to the left lung. In the far advanced pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be $18.5{\pm}11.6%$ to the right lung and $81.5{\pm}9.9%$ to the left lung when the tuberculous lesion was more severe in the right lung, and $78.2{\pm}8.9%$ to the right lung and $21.8{\pm}10.5%$ to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved the average distribution of pulmonary arterial blood flow was found to be $56.0{\pm}3.6%$ to the right lung and $44.0{\pm}3.2%$ to the left lung. 2. Lung perfusion scan by $^{131}I$-MAA in patients with pulmonary tuberculosis was as follows: a) In the pretreated minimal pulmonary tuberculosis, the decreased area of pulmonary arterial blood flow was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive than had been expected from the chest roentgenogram in the apparently healed minimal pulmonary tuberculosis. b) In the pretreated moderately advanced pulmonary tuberculosis, the decrease of pulmonary arterial blood flow to the diseased area was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive in the treated moderately advanced pulmonary tuberculosis as in the treated minimal pulmonary tuberculosis. c) Pulmonary arterial blood flow in the patients with far advanced pulmonary tuberculosis both before and after chemotherapy were almost similar to the chest roentgenogram. Especially the decrease of pulmonary arterial blood flow to the cavity was usually greater than had been expected from the chest roentgenogram. 3. Lung inhalation scan by colloidal $^{198}Au$ in patients with pulmonary tuberculosis was as follows: a) In the minimal pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram. b) In the moderately advanced pulmonary tuberculosis the decrease of radioactivity in the diseased area was partly corresponding to the chest roentgenogram in one hand and on the other hand the radioactivity was found to be normally distributed in stead of tuberculous lesion in the chest roentgenogram. c) In the far advanced pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram as in the minimal pulmonary tuberculosis. 4. From all these results, it was found that the characteristic finding in pulmonary tuberculosis was a decrease in pulmonary arterial blood flow to the diseased area and in general decrease of pulmonary arterial blood flow to the diseased area was more extensive than had been expected from the chest roentgenogram, especially in the treated group. Lung inhalation scan showed almost similar distribution of radioactivity corresponding to the chest roentgenogram in minimal and far advanced pulmonary tuberculosis, but there was a variability in the moderately advanced pulmonary tuberculosis. The measured values obtained from spirometry were parallel to the tuberculous lesion in chest roentgenogram.

  • PDF

Perfusion RRI of the Brain Using Oxygen Inhalation (산소 호흡을 이용한 뇌의 관류 자기공명영상)

  • 최순섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • Purpose : To know the possibility of clinical application of MRI using oxygen inhalation as a perfusion MRI Materials and methods : Two healthy volunteers and three patients of one moyamoya disease, one acute infarction and one meningioma were studied using a 1.5 Tesla MRI unit. Oxygen (15 liters/min) mixed with room air was given using face mask from 8 second to 35 second during the study. Images were acquired 25 times (scan time per study were 1.6 seconds) using susceptibility contrast EPI (echo planar image) sequence. Difference maps were acquired by early (study 12-18), and late (study 19-25) O2 inhalation image groups minus pre-O2 inhalation image group (study 3-9) with a Z-score of 0.7-1.0 using VB31C program of Magneton Vision. The resulting perfusion images were created by superimposition of difference maps on corresponding T1 weighted anatomic images. On moyamoya patient, similar perfusion images were acquired after Gd-DTPA injection, and compared with O2 inhalation perfusion images. Results ; The author can get the perfusion images of the brain by oxygen inhalation with susceptibility contrast EPI sequence at the volunteers, and the patient of moyomoya disease, acute infarction and meningioma. On moyamoya patient, perfusion images with O2 inhalation are similar with perfusion images by Gd-DTPA injection. Conclusion 1 This study has demonstrated that the susceptibility contrast EPI by oxygen inhalation can be used as the clinically useful perfusion MRI technique

  • PDF

Radioaerosol Inhalation Lung Scan in Pulmonary Emphysema (폐기종의 연무흡입 폐환기스캔 소견)

  • Jeon, Jeong-Su;Park, Young-Ha;Chung, Soo-Kyo;Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.24 no.2
    • /
    • pp.229-236
    • /
    • 1990
  • Perfusion and ventilaion imagings of the lung are well established procedure for diagnosing pulmonary embolism, differentiation it from chronic obstructive lung disease, and making an early detection of chronic obstructive lung disease. To evaluate the usefulness of radioaerosol inhalation imaging (RII) in chronic obstructive lung disease, especially pulmonary emphysema, we analyzed RIIs of five normal adult non-smokers, five asymptomatic smokers (age 25-42 years with the mean 36), and 21 patients with pulmonry emphysema (age 59-78 years with the mean 67). Scintigrams were obtained with radioaerosol produced by a BARC nebulizer with 15 mCi of Tc-99m-phytate. Scanning was performed in the anterior, posterior, and lateral projections after five to 10-minute inhalation of the radioaerosol on sitting position. The scans were analyzed and correlated with the results of pulmonary function studies and chest radiographs. Also lung perfusion scan with $^{99m}Tc-MAA$ was performed in 12 patients. In five patients, we performed follow-up scans for the evaluation of the effects of a bronchodilator. Based on the X-ray findings and clinical symptoms, pulmonary emphysema was classified into four types: centrilobular (3 patients), panlobular (4 patients), intermediate (10 patients), and combined (4 patients). RII findings were patternized according to the type, extent, and intensity of the aerosol deposition in the central bronchial and bronchopulmonary system and lung parenchyma. 10 controls, normal five non-smokers and three asymptomatic smokers revealed homogeneous parenchymal deposition in the entire lung fields without central bronchial deposition. The remaining two of asymptomatic smokers revealed mild central airway deposition. The great majority of the patients showed either central (9/21) or combined type (10/21) of bronchopulmonary deposition and the remaining two patients peripheral bronchopulmonary deposition. Parenchymal aerosol deposition in pulmonary emphysema was diffuse (6/21), discrete(6/21), intermediate (3/21), or combined (6/21). In 12 patients studied also with perfusion scans, perfusion defects matched closely with ventilation defects in location and configuration. But the size of the ventilation defects was generally larger than the perfusion defects. In all four patients treated with bronchodilators, the follow-up study demonstrated decrease in abnormal of radioaerosol deposition in the central airway with improvement of ventilation defects. RII was useful technique for the evaluation of regional ventilatory abnormality and the effects of treatment with bronchodilators in pulmonary emphysema.

  • PDF

A Case of Organophosphate Insecticide Intoxication by Repetitive Parenteral Exposure, Complicated with Intermediate Syndrome and Acute Pancreatitis (반복적인 비경구노출에 의한 유기인계 중독: 중간형증후군과 급성췌장염 1례)

  • Oh, Se-Hyun;Kang, Hui-Dong;Lee, Boo-Soo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.4 no.2
    • /
    • pp.161-165
    • /
    • 2006
  • Organophosphate insecticides, commonly used in agriculture, are a gradually increasing cause of accidental and suicidal poisoning. Intoxication can occur by ingestion, inhalation or dermal contact. Exposure to organophosphorus agents causes a sequentially triphasic illness consisting of the cholinergic phase, the intermediate syndrome, and organophosphate-induced delayed polyneuropathy. Acute pancreatitis as a rare complication of organophosphate intoxication has also been infrequently observed. We report a case of intoxication with organophosphate (phos-phamidon) by parenteral exposure (inhalation and/or dermal contact). A 34-year-old male patient was transferred to our Emergency Medical Center and was intubated due to a progressive respiratory failure. He presented with meiotic pupils, cranial nerve palsies, weak respiration, and proximal limb motor weaknesses without sensory changes. He had been employed in filling syringes with phosphamidon during the previous month. Because the patient's history and symptoms suggested organophosphate intoxication with intermediate syndrome, he was mechanically ventilated for 18 days with continuous infusion of atropine and pralidoxime (total amounts of 159 mg and 216 g, respectively). During his admission, hyperamylasemia and hyperli-pasemia were detected, and his abdominal CT scan showed a finding compatible with acute pancreatitis. He was administered a conservative treatment with NPO and nasogastric drainage. The patient was discharged and showed neither gastrointestinal nor neurologic sequelae upon follow up at one week and three months.

  • PDF

Influences of Anesthetics in term of Computed Tomography Bronchial Lumen to Pulmonary Artery Diameter Ratio in Beagle Dogs (비글견의 컴퓨터단층영상에서 기관내강과 폐동맥 직경비율의 마취제에 따른 영향평가)

  • Lim, Jong-su;Hwang, Tae-sung;Yoon, Young-min;Jung, Dong-in;Yeon, Seong-chan;Lee, Hee-chun
    • Journal of Veterinary Clinics
    • /
    • v.33 no.1
    • /
    • pp.6-9
    • /
    • 2016
  • Bronchoarterial (BA) ratio is a commonly used criterion to define airway dilatation despite the lack of normative human and animals. The objective of our study was to compare the range of normal bronchial to accompanying arterial diameter ratio with previous reports on CT scan of the thorax in dogs and assess influence anesthetics on BA ratio in dogs. Dogs undergoing multidetector CT scan of the chest for nonpulmonary conditions at a single center were prospectively identified. High-resolution reconstruction was performed on those included and both airway lumen and vessel diameters were measured in the lobar bronchi of the left cranial (cranial and caudal parts), right cranial, right middle, left caudal, and right caudal lung lobes. Eight dog were included; Mean of the mean BA ratios was $1.43{\pm}0.24$ (95% CI = 1.36 - 1.50) in inhalation anesthetic group. In propofol group, the mean of the mean BA ratios was $1.13{\pm}0.29$ (95% CI = 1.04 - 1.22). In medetomidine group, the mean of the mean BA ratios was $0.89{\pm}0.19$ (95% CI = 0.83 - 0.95). Comparing individual lobes within anesthetic category, there was no signicant difference in mean BA ratio between lung lobes or between dog according to inhalation, propofol, and medetomidine group (P = 0.630, P = 0.878, and P = 0.508, respectively). The BA ratio in these clinically normal dogs was consistent and may be a useful tool in evaluating for bronchiectasis on CT images. However, some different criteria for bronchiectasis were applied by the anesthetic methods.

Visibility of Internal Target Volume of Dynamic Tumors in Free-breathing Cone-beam Computed Tomography for Image Guided Radiation Therapy

  • Kauweloa, Kevin I.;Park, Justin C.;Sandhu, Ajay;Pawlicki, Todd;Song, Bongyong;Song, William Y.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.220-229
    • /
    • 2013
  • Respiratory-induced dynamic tumors render free-breathing cone-beam computed tomography (FBCBCT) images with motion artifacts complicating the task of quantifying the internal target volume (ITV). The purpose of this paper is to study the visibility of the revealed ITV when the imaging dose parameters, such as the kVp and mAs, are varied. The $Trilogy^{TM}$ linear accelerator with an On-Board Imaging ($OBI^{TM}$) system was used to acquire low-imaging-dose-mode (LIDM: 110 kVp, 20 mA, 20 ms/frame) and high-imaging-dose-mode (HIDM: 125 kVp, 80 mA, 25 ms/frame) FBCBCT images of a 3-cm diameter sphere (density=0.855 $g/cm^3$) moving in accordance to various sinusoidal breathing patterns, each with an unique inhalation-to-exhalation (I/E) ratio, amplitude, and period. In terms of image ITV contrast, there was a small overall average change of the ITV contrast when going from HIDM to LIDM of $6.5{\pm}5.1%$ for all breathing patterns. As for the ITV visible volume measurements, there was an insignificant difference between the ITV of both the LIDM- and HIDM-FBCBCT images with an average difference of $0.5{\pm}0.5%$, for all cases, despite the large difference in the imaging dose (approximately five-fold difference of ~0.8 and 4 cGy/scan). That indicates that the ITV visibility is not very sensitive to changes in imaging dose. However, both of the FBCBCT consistently underestimated the true ITV dimensions by up to 34.8% irrespective of the imaging dose mode due to significant motion artifacts, and thus, this imaging technique is not adequate to accurately visualize the ITV for image guidance. Due to the insignificant impact of imaging dose on ITV visibility, a plausible, alternative strategy would be to acquire more X-ray projections at the LIDM setting to allow 4DCBCT imaging to better define the ITV, and at the same time, maintain a reasonable imaging dose, i.e., comparable to a single HIDM-FBCBCT scan.