• Title/Summary/Keyword: Ingot structure

Search Result 50, Processing Time 0.02 seconds

Design Alterations of a Grinder of Semiconductor Wafer for the Improved Stability (반도체 Wafer용 Grinder의 안정화 설계)

  • Kil, Sa Geun;Ro, Seung Hoon;Shin, Yun Ho;Kim, Young Jo;Kim, Geon Hyeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.91-96
    • /
    • 2017
  • One of the most critical aspects of the modern semiconductor industry is the quality of wafer surface, the roughness of which is mostly caused by the ingot slicing. And the grinding is supposed to be the main process to reduce the surface roughness. The vibrations of the disc surface grinder are the major problem to effectively achieve the required surface quality. In this study, the structure of a disc surface grinder was analyzed through the experiment and the computer simulation to investigate the dynamic characteristics of the machine, and further to alter the design for the improved stability. The result of the study shows that simple design alterations without alternating main body can effectively suppress the vibrations of the machine.

  • PDF

A Study on Microstructure of Vanadium-Aluminum Alloy by Mechanical Alloying (기계적합금화법(機械的合金化法)에 의(依)한 V-Al합금(合金)의 미세조직(微細組織) 변화(變化)에 관(關)한 연구(硏究))

  • Choi, Woon;Kim, Ha-Young;Nam, Seoung-Eui
    • Journal of Korea Foundry Society
    • /
    • v.11 no.6
    • /
    • pp.455-462
    • /
    • 1991
  • The formation of brittle intermetallic compound such as $VAl_3$ tends tp lower the toughness of V-Al alloys. Also, due to the high melting point of vanadium, it is difficult to make that alloy by previous ingot metallurgy method. To depress the technique has been adopted. The effect of particle size and milling time on the phase has been thoroughly studied. For mechanical alloying, SPEX mixed/mill has been used. The milling time and the composition of V and Al are varied to find the optimum condition of forming amorphous phase. The X-Ray Diffrection pattern, microstructure detection, microhandess test, experiments are carried out to analyze MA product. When the final step is reached, no lamellar-structure is detected. The steady state condition is observed after 8 hours and 10 hours milling for 15wt.%Al and 30wt.%Al alloy, respectively. The microhardness continuously increases up to 10 hours after then it remains constant.

  • PDF

Microstructural and Mechanical Characteristics of A356 Alloy Cast by Semi-Solid Squeeze Process (반응고 공정 가압 주조한 A356합금의 미세조직 및 기계적 특성)

  • Kim, Sug-Won;Kang, Yeun-Cheul;Kim, Dong-Kun;Kumai, Sinji
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2000
  • So far, the study on semi-solid process has been carried out to develop and research new advanced materials without some casting defects. In this study, A356 billets consisted of various dendritic shapes were prepared using electro-magnetic stirring process continuously. As-cast respectively has liquidus temperature of $625.6^{\circ}C$ and solidus temperature of $573.55^{\circ}C$ A356 slugs were reheated homogeneously at different temperatures of 580, 590 and $605^{\circ}C$, followed by squeezing in a mold insulated with applied pressures(0, 25, 50 and 70 MPa). In order to investigate on aging responce for casts, 50 MPa squeezed specimen among all specimens was prepared in aging treatments, which conditions are aging temperature of $160^{\circ}C$ and holding times of 0, 45, 90, 270, 360, 720, 1440 and 2880 min after solution treatment ($540^{\circ}C$ for 10 hr). SSM ingot with the output velocity of 150mm/min appeared more spheroidal shape and fine structure than that with the output velocity of 250 mm/min. According to increasing in reheating temperature, numbers of fatigue cycles, U.T.S and elongation increased at same time.

  • PDF

The Effects of VAR Processing Parameters on solidification Microstructures in Ti Alloys by Computer Simulation (열전달 해석을 이용한 VAR 공정 변수가 티타늄 합금 잉고트 응고 조직에 미치는 영향 연구)

  • Kim, Jong-Hwan;Lee, Jae-Hyeon;Heo, Seong-Gang;Hyeon, Yong-Taek;Lee, Yong-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.398-406
    • /
    • 2002
  • VAR process is required to control its various operating parameters. Heat transfer simulation has been accomplished to understand development of solidification micro and macro-structures during VAR process in Ti alloys. Optimum VAR process parameters could be also estimated in this study. It was found that macro-structures were closely related to the shape and depth of liquid pool, and solidification parameters, such as temperature gradient, heat flux, solid fraction. The cooling rates were higher at bottom, top, and center part respectively. As cooling rates increased, the $\alpha$ phase decreased in length, width and fraction. In order to evaluate which parameter affects the result of heat transfer calculation most sensitively, the sensitivities of input parameters to the simulation result were examined. The pool depth and cooling rate showed more sensitive to the temperature of the molten metal, heat transfer coefficient, and liquidus respectively. Also, these thermal properties became more sensitive at higher temperatures.

Investigating the Iron-Making Process through the Scientific Analysis of By-products Obtained during Iron-Making from Songdu-ri Site in Jincheon, Korea

  • Jung, Da Yeon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.33-44
    • /
    • 2022
  • The study, iron-making process was examined through the scientific analysis of six by-products that were obtained during iron making at the Songdu-ri site in Jincheon. The total Fe content of the slags excavated from the Songdu-ri site was 36.29-54.61 wt%, whereas the deoxidation agent was 26.48-49.08 wt%. The compound analysis result indicated that fayalite and wüstite are the main compounds in slag. Furthermore, the microstructure analysis result confirmed the presence of fayalite and wüstite in the slag. It can be inferred from the flat shape in a bright matrix structure of the hammer scales that forging was performed in the latter stage. The Raman micro-spectroscopy results confirmed that the surface was hematite (Fe2O4), middle layer was magnetite (Fe3O4), and inner layer was wüstite (FeO). The presence of smelting and smithing slags, spheroid hammer scales, and flake hammer scales suggests that at the Songdu-ri site, iron-making process is carried out by division of labor into producing iron bloom through direct smelting, refining and forge welding, and ingot production.

Numerical analysis of CZ growth process for sapphire crystal of 300 mm length: Part II. Predictions of crystal growth length without sub-grain defects (300 mm 길이의 사파이어 단결정 대한 CZ 성장공정의 수치해석: Part II. Subgrain 결함이 없는 단결정 성장 길이의 예측)

  • Shin, Ho Yong;Hong, Su Min;Yoon, Jong Won;Jeong, Dae Yong;Im, Jong In
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.272-278
    • /
    • 2013
  • In this study, a c-axis displacement and an internal stress of the sapphire crystal of 300 mm length have been analyzed numerically and the crystal length having no sub-grain defects have been predicted. The hot zone structures were modified with the crucible geometry change and the additional insulation layer installed above the crucible. The simulation results show that the c-axis displacement difference between the original hot zone and others originated from the sub-grain defect formations in the sapphire ingot. When the crystal grown by CZ (Czochralski) grower using the modified hot zone, the crystal length having no sub-grain defects was increased about 57 mm maximum than the original one. When the simulation results compared with the experimental one, the predicted crystal length having no sub-grain defects were well corresponded with the experiment one in c-axis wafer of the 300 mm sapphire ingot. Therefore the sapphire crystal of 250 mm length having no sub-grain defects was successfully grown by CZ process.

Fabrication of Titanium alloy by Electromagnetic Continuous Casting (EMCC) Method for Medical Applications (전자기 연속 주조법을 이용한 의료용 타이타늄 합금 제작에 관한 연구)

  • Choi, Su-Ji;Lee, Hyun-Jae;Baek, Su-Hyun;Hyun, Soong-Keun;Jung, Hyun-Do;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Electromagnetic continuous casting (EMCC) was used to fabricate Ti-6Al-4V alloys with properties suitable for medical applications. Ti-6Al-4V alloy ingots fabricated by EMCC were subjected to heat treatment, such as residual stress removing (RRS), furnace cooling after solution treatment (ST-FC) and water-cooling after solution treatment (ST-WC), in order to obtain characteristics suitable for the standard. After component analysis, the microstructure and mechanical properties (tensile strength and elongation) were evaluated by ICP, gas analysis, OM, SEM, a Rockwell hardness tester and universal testing machine. The Ti-6Al-4V alloy ingot fabricated by EMCC was fabricated without segregation, and the lamellar structure was observed in the RRS and ST-FC specimens. The ST-WC specimen showed only martensite structure. As a result of evaluating the mechanical properties based on the microstructure results, we found that the water-cooled heat treatment condition after the solution treatment was most suitable for the Ti-6Al-4V ELI standard.

Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys (기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성)

  • 표성규
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.98-110
    • /
    • 1998
  • $Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

  • PDF

The Effect of Internal Chills on the Solidified Structure and Chemical Segregation (응고조직 및 성분편석에 미치는 내부냉금의 효과)

  • Kim, Myeong-Han;Jo, Hyeon-Nam;Kim, Jeong-Gyeom;Jo, Hyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.883-889
    • /
    • 1999
  • The pure Al or-(1,2,3wt%)Cu alloy internal chill with 4,6,8,12 and 15mm ø, respectively, was inserted at the center of a graphite mold with the size of 95mm ø$\times$200mm H. The molten metal with the same composition as the internal chill was poured into the mold at the pouring temperature of $750^{\circ}C$ and the cooling rates, solidified structures and chemical segregation were analyzed. The results represented that there was remarkable increased in cooling rate as well as decrease in grain size, secondary dendrite arm spacing and chemical segregation as the ratio of ingot to internal chill diameter was increased to 8. However there was a considerable drop of the internal chill effect when this ratio exceeded 8, resulting from incomplete melting of internal chills. The optimum ratio for the maximum internal chill effect of pure Al and-(1,2,3wt%)Cu allolys was 8 at the given pouring temperature.

  • PDF

Annealing Characteristics of an Al-6.5Mg-1.5Zn Alloy Cold-Rolled After Casting (주조 후 냉간 압연된 Al-6.5Mg-1.5Zn계 합금의 어닐링 특성)

  • Oh, Sung-Jun;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.534-538
    • /
    • 2018
  • The annealing characteristics of a cold rolled Al-6.5Mg-1.5Zn alloy newly designed as an automobile material is investigated in detail. The aluminum alloy in the ingot state is cut to a thickness of 4 mm, a total width of 30 mm and a length of 100 mm and then reduced to a thickness of 1 mm (reduction of 75 %) by multi-pass rolling at room temperature. Annealing after rolling is performed at temperatures ranging from 200 to $400^{\circ}C$ for 1 hour. The tensile strength of the annealed material tends to decrease with the annealing temperature and shows a maximum tensile strength of 482MPa in the material annealed at $200^{\circ}C$. The tensile elongation of the annealed material increases with the annealing temperature, while the tensile strength does not, and reaches a maximum value of 26 % at the $350^{\circ}C$ annealed material. For the microstructure, recovery and recrystallization actively occur as the annealing temperature increases. The recrystallization begins to occur at $300^{\circ}C$ and is completed at $350^{\circ}C$, which results in the formation of a fine grained structure. After the rolling, the rolling texture of {112}<111>(Cu-Orientation) develops, but after the annealing a specific texture does not develop.